1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
|
7. |
|
8. |
|
9. |
|
10. |
Yu H, Xu M, Duan Q, et al. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Biomed Mater, 2024, 19(4).
|
11. |
|
12. |
|
13. |
|
14. |
Kazemi N, Hassanzadeh-Tabrizi SA, Koupaei N, et al. Incorporation of forsterite nanoparticles in a 3D printed polylactic acid/polyvinylpyrrolidone scaffold for bone tissue regeneration applications. Int J Biol Macromol, 2025, 305(Pt 1): 141046.
|
15. |
|
16. |
|
17. |
|
18. |
Wang B, Ye X, Chen G, Zhang Y, Zeng Z, Liu C, et al. Fabrication and properties of PLA/beta-TCP scaffolds using liquid crystal display (LCD) photocuring 3D printing for bone tissue engineering. Front Bioeng Biotechnol. 2024;12: 1273541.
|
19. |
|
20. |
|
21. |
|
22. |
|
23. |
|
24. |
|
25. |
|
26. |
|
27. |
|
28. |
|
29. |
|
30. |
|
31. |
|
32. |
|
33. |
|
34. |
|
35. |
|
36. |
|
37. |
|
38. |
|
39. |
|
40. |
|
41. |
|
42. |
|
43. |
|
44. |
|
45. |
|
46. |
Hudák R, Schnitzer M, Králová ZO, et al. Additive manufacturing of porous Ti6Al4V alloy: Geometry analysis and mechanical properties testing. Applied Sciences-Basel, 2021, 11(6).
|
47. |
|
48. |
|
49. |
|
50. |
|
51. |
|
52. |
|
53. |
|
54. |
|
55. |
|
56. |
|
57. |
|
58. |
|
59. |
|
60. |
|
61. |
|
62. |
|
63. |
|
64. |
Wiltfang J, Rohnen M, Egberts JH, et al. Man as a living bioreactor: Prefabrication of a custom vascularized bone graft in the gastrocolic omentum. Tissue Engineering Part C: Methods, 2016, 22(8): 740-746.
|
65. |
|
66. |
|
67. |
Finley JM, Acland RD, Wood MB. Revascularized periosteal grafts—a new method to produce functional new bone without bone grafting. Plast Reconstr Surg, 1978, 61(1): 1-6.
|
68. |
|
69. |
|
70. |
|
71. |
|
72. |
Cai X, Xu Y, Yu K, et al. Clinical application of 3-dimensional printed navigation templates in treating femoral head osteonecrosis with pedicled iliac bone graft. Ann Plast Surg, 2020, 84(5S Suppl 3): S230-S234.
|