1. |
Vina ER, Kwoh CK. Epidemiology of osteoarthritis: literature update. Curr Opin Rheumatol, 2018, 30(2): 160-167.
|
2. |
周坤, 孙翠翠, 谈杰, 等. 单侧膝骨关节炎患者步行特征研究. 按摩与康复医学, 2021, 12(21): 23-27.
|
3. |
王欣, 罗文, 黄文泽, 等. 单侧膝骨关节炎临床分期与双足足底压力的相关性. 中国组织工程研究, 2021, 25(27): 4312-4317.
|
4. |
Li Y, Luo R, Luo S, et al. Influencing factors analysis of asymmetry in knee adduction moment among patients with unilateral knee osteoarthritis. BMC Musculoskeletal Disorders, 2024, 25(1): 832. doi: 10.1186/s12891-024-07956-3.
|
5. |
张震, 董跃福, 苏宏飞, 等. 轻度OA膝关节有限元解剖模型的构建及其力学分析. 中国矫形外科杂志, 2020, 28(5): 439-443.
|
6. |
王子坚, 闫松华, 李伟, 等. 单侧膝内翻型膝骨关节炎患者足底压力分布特征研究. 北京生物医学工程, 2019, 38(2): 151-158.
|
7. |
Hall M, Bennell KL, Wrigley TV, et al. The knee adduction moment and knee osteoarthritis symptoms: relationships according to radiographic disease severity. Osteoarthritis Cartilage, 2017, 25(1): 34-41.
|
8. |
Sritharan P, Lin YC, Richardson SE, et al. Musculoskeletal loading in the symptomatic and asymptomatic knees of middle-aged osteoarthritis patients. J Orthop Res, 2017, 35(2): 321-330.
|
9. |
Creaby MW, Bennell KL, Hunt MA. Gait differs between unilateral and bilateral knee osteoarthritis. Arch Phys Med Rehabil, 2012, 93(5): 822-827.
|
10. |
Jones RK, Chapman GJ, Findlow AH, et al. A new approach to prevention of knee osteoarthritis: reducing medial load in the contralateral knee. J Rheumatol, 2013, 40(3): 309-315.
|
11. |
Shakoor N, Block JA, Shott S, et al. Nonrandom evolution of end-stage osteoarthritis of the lower limbs. Arthritis Rheum, 2002, 46(12): 3185-3189.
|
12. |
Dai Z, Yang T, Liu J. Contralateral knee osteoarthritis is a risk factor for ipsilateral knee osteoarthritis progressing: a case control study. BMC Musculoskelet Disord, 2024, 25(1): 190. doi: 10.1186/s12891-024-07292-6.
|
13. |
Roemer FW, Eckstein F, Duda GN, et al. Frequencies of MRI-detected structural pathology in knees without radiographic OA and worsening over three years: How relevant is contralateral radiographic osteoarthritis? Osteoarthr Cartil Open, 2019, 1(3-4): 100014. doi: 10.1016/j.ocarto.2019.100014.
|
14. |
Briem K, Snyder-Mackler L. Proximal gait adaptations in medial knee OA. J Orthop Res, 2009, 27(1): 78-83.
|
15. |
Duffell LD, Southgate DF, Gulati V, et al. Balance and gait adaptations in patients with early knee osteoarthritis. Gait Posture, 2014, 39(4): 1057-1061.
|
16. |
Dunphy C, Casey S, Lomond A, et al. Contralateral pelvic drop during gait increases knee adduction moments of asymptomatic individuals. Hum Mov Sci, 2016, 49: 27-35.
|
17. |
Mündermann A, Dyrby CO, Andriacchi TP. Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum, 2005, 52(9): 2835-2844.
|
18. |
Stief F, Böhm H, Ebert C, et al. Effect of compensatory trunk movements on knee and hip joint loading during gait in children with different orthopedic pathologies. Gait Posture, 2014, 39(3): 859-864.
|
19. |
Wu R, Fu G, Li M, et al. Contralateral advanced radiographic knee osteoarthritis predicts radiographic progression and future arthroplasty in ipsilateral knee with early-stage osteoarthritis. Clin Rheumatol, 2022, 41(10): 3151-3157.
|
20. |
Bach CM, Nogler M, Steingruber IE, et al. Scoring systems in total knee arthroplasty. Clin Orthop Relat Res, 2002, (399): 184-196.
|
21. |
Hurwitz DE, Ryals AB, Case JP, et al. The knee adduction moment during gait in subjects with knee osteoarthritis is more closely correlated with static alignment than radiographic disease severity, toe out angle and pain. J Orthop Res, 2002, 20(1): 101-107.
|
22. |
Cappozzo A, Catani F, Croce UD, et al. Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol), 1995, 10(4): 171-178.
|
23. |
ZeYu Huang Y N, Xu B, Shen B, et al. Evidence and mechanism by which upper partial fibulectomy improves knee biomechanics and decreases knee pain of osteoarthritis. J Orthop Res, 2018, 36(8): 2099-2108.
|
24. |
Lerner ZF, DeMers MS, Delp SL, et al. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J Biomech, 2015, 48(4): 644-650.
|
25. |
Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng, 2007, 54(11): 1940-1950.
|
26. |
Steele KM, Demers MS, Schwartz MH, et al. Compressive tibiofemoral force during crouch gait. Gait Posture, 2012, 35(4): 556-560.
|
27. |
Wu G, Cavanagh PR. ISB recommendations for standardization in the reporting of kinematic data. J Biomech, 1995, 28(10): 1257-1261.
|
28. |
Pataky TC, Robinson MA, Vanrenterghem J. Vector field statistical analysis of kinematic and force trajectories. J Biomech, 2013, 46(14): 2394-2401.
|
29. |
Killen BA, Willems M, Jonkers I. An open-source framework for the generation of OpenSim models with personalised knee joint geometries for the estimation of articular contact mechanics. J Biomech, 2024, 177: 112387. doi: 10.1016/j.jbiomech.2024.112387.
|
30. |
Wang J, Xu F, Zhang H, et al. Validation of full-length radiograph based musculoskeletal modeling method to estimate medial and lateral knee contact forces. Gait Posture, 2024, 114: 108-111.
|
31. |
Valente G, Grenno G, Dal Fabbro G, et al. Medial and lateral knee contact forces during walking, stair ascent and stair descent are more affected by contact locations than tibiofemoral alignment in knee osteoarthritis patients with varus malalignment. Front Bioeng Biotechnol, 2023, 11: 1254661. doi: 10.3389/fbioe.2023.1254661.
|
32. |
Dell'Isola A, Smith SL, Andersen MS, et al. Knee internal contact force in a varus malaligned phenotype in knee osteoarthritis (KOA). Osteoarthritis Cartilage, 2017, 25(12): 2007-2013.
|
33. |
Yamagata M, Taniguchi M, Tateuchi H, et al. The effects of knee pain on knee contact force and external knee adduction moment in patients with knee osteoarthritis. J Biomech, 2021, 123: 110538. doi: 10.1016/j.jbiomech.2021.110538.
|
34. |
杨洪源, 张延明, 罗丁元, 等. 膝关节内收力矩影响因素的研究进展及其在膝骨关节炎诊疗中的应用. 医用生物力学, 2025, 40(1): 231-236.
|
35. |
Foroughi N, Smith R, Vanwanseele B. The association of external knee adduction moment with biomechanical variables in osteoarthritis: a systematic review. Knee, 2009, 16(5): 303-309.
|
36. |
汤雨婷, 安丙辰, 郑洁皎. 膝骨关节炎生物力学参数的研究进展. 中国康复理论与实践, 2020, 26(12): 1417-1421.
|
37. |
Hunt MA, Wrigley TV, Hinman RS, et al. Individuals with severe knee osteoarthritis (OA) exhibit altered proximal walking mechanics compared with individuals with less severe OA and those without knee pain. Arthritis Care Res (Hoboken), 2010, 62(10): 1426-1432.
|
38. |
Mills K, Hettinga BA, Pohl MB, et al. Between-limb kinematic asymmetry during gait in unilateral and bilateral mild to moderate knee osteoarthritis. Arch Phys Med Rehabil, 2013, 94(11): 2241-2247.
|
39. |
Wang Y, Zhang P, Chen G, et al. Comparison of the asymmetries in foot posture, gait and plantar pressure between patients with unilateral and bilateral knee osteoarthritis based on a cross-sectional study. Sci Rep, 2024, 14(1): 26761. doi: 10.1038/s41598-024-78166-z.
|
40. |
Ismailidis P, Hegglin L, Egloff C, et al. Side to side kinematic gait differences within patients and spatiotemporal and kinematic gait differences between patients with severe knee osteoarthritis and controls measured with inertial sensors. Gait Posture, 2021, 84: 24-30.
|
41. |
Wang HY, Ho CY, Pan MC. Evaluation of lumbar and hip movement characterization and muscle activities during gait in patients with knee osteoarthritis. Gait Posture, 2024, 108: 1-8.
|
42. |
Bejek Z, Paróczai R, Illyés A, et al. The influence of walking speed on gait parameters in healthy people and in patients with osteoarthritis. Knee Surg Sports Traumatol Arthrosc, 2006, 14(7): 612-622.
|
43. |
Childs JD, Sparto PJ, Fitzgerald GK, et al. Alterations in lower extremity movement and muscle activation patterns in individuals with knee osteoarthritis. Clin Biomech (Bristol), 2004, 19(1): 44-49.
|
44. |
Hunt MA, Birmingham TB, Giffin JR, et al. Associations among knee adduction moment, frontal plane ground reaction force, and lever arm during walking in patients with knee osteoarthritis. J Biomech, 2006, 39(12): 2213-2220.
|
45. |
Matsumoto T, Hashimura M, Takayama K, et al. A radiographic analysis of alignment of the lower extremities—initiation and progression of varus-type knee osteoarthritis. Osteoarthritis Cartilage, 2015, 23(2): 217-223.
|
46. |
Chang AH, Chmiel JS, Moisio KC, et al. Varus thrust and knee frontal plane dynamic motion in persons with knee osteoarthritis. Osteoarthritis Cartilage, 2013, 21(11): 1668-1673.
|
47. |
Creaby MW, Wang Y, Bennell KL, et al. Dynamic knee loading is related to cartilage defects and tibial plateau bone area in medial knee osteoarthritis. Osteoarthritis Cartilage, 2010, 18(11): 1380-1385.
|
48. |
Winby CR, Lloyd DG, Besier TF, et al. Muscle and external load contribution to knee joint contact loads during normal gait. J Biomech, 2009, 42(14): 2294-2300.
|
49. |
Sritharan P, Lin YC, Richardson SE, et al. Lower-limb muscle function during gait in varus mal-aligned osteoarthritis patients. J Orthop Res, 2018. doi: 10.1002/jor.23883.
|
50. |
Lin YC, Walter JP, Pandy MG. Predictive simulations of neuromuscular coordination and joint-contact loading in human gait. Ann Biomed Eng, 2018, 46(8): 1216-1227.
|
51. |
Lin YC, Pandy MG. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation. J Biomech, 2017, 59: 1-8.
|