1. |
Arendt EA, Fithian DC, Cohen E. Current concepts of lateral patella dislocation. Clin Sports Med, 2002, 21(3): 499-519.
|
2. |
Nietosvaara Y, Aalto K, Kallio PE. Acute patellar dislocation in children: incidence and associated osteochondral fractures. J Pediatr Orthop, 1994, 14(4): 513-515.
|
3. |
Sillanpää P, Mattila VM, Iivonen T, et al. Incidence and risk factors of acute traumatic primary patellar dislocation. Med Sci Sports Exerc, 2008, 40(4): 606-611.
|
4. |
Migliorini F, Marsilio E, Oliva F, et al. Chondral injuries in patients with recurrent patellar dislocation: a systematic review. J Orthop Surg Res, 2022, 17(1): 63. doi: 10.1186/s13018-022-02911-1.
|
5. |
Buckwalter JA, Martin JA, Olmstead M, et al. Osteochondral repair of primate knee femoral and patellar articular surfaces: implications for preventing post-traumatic osteoarthritis. Iowa Orthop J, 2003, 23: 66-74.
|
6. |
Sanders TL, Pareek A, Hewett TE, et al. Incidence of first-time lateral patellar dislocation: a 21-year population-based study. Sports Health, 2018, 10(2): 146-151.
|
7. |
Pedersen ME, DaCambra MP, Jibri Z, et al. Acute osteochondral fractures in the lower extremities-approach to identification and treatment. Open Orthop J, 2015, 9: 463-474.
|
8. |
Buchner M, Baudendistel B, Sabo D, et al. Acute traumatic primary patellar dislocation: long-term results comparing conservative and surgical treatment. Clin J Sport Med, 2005, 15(2): 62-66.
|
9. |
Nietosvaara Y, Aalto K, Kallio PE. Acute patellar dislocation in children: incidence and associated osteochondral fractures. J Pediatr Orthop, 1994, 14(4): 513-515.
|
10. |
Pedersen ME, DaCambra MP, Jibri Z, et al. Acute osteochondral fractures in the lower extremities—Approach to identification and treatment. Open Orthop J, 2015, 9: 463-474.
|
11. |
Trattnig S, Winalski CS, Marlovits S, et al. Magnetic resonance imaging of cartilage repair: A review. Cartilage, 2011, 2(1): 5-26.
|
12. |
Wang A, Torres-Izquierdo B, Nepple JJ. Osteochondral fractures in adolescents with first-time patellar dislocation: three-dimensional characterization and association with radiographic features. Am J Sports Med, 2025, 53(3): 682-689.
|
13. |
Mashoof AA, Scholl MD, Lahav A, et al. Osteochondral injury to the mid-lateral weight-bearing portion of the lateral femoral condyle associated with patella dislocation. Arthroscopy, 2005, 21(2): 228-232.
|
14. |
Uimonen M, Ponkilainen V, Paloneva J, et al. Characteristics of osteochondral fractures caused by patellar dislocation. Orthop J Sports Med, 2021, 9(1): 2325967120974649. doi: 10.1177/2325967120974649.
|
15. |
Nomura E, Inoue M, Kurimura M. Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy, 2003, 19(7): 717-721.
|
16. |
Luhmann SJ, Schoenecker PL, Dobbs MB, et al. Arthroscopic findings at the time of patellar realignment surgery in adolescents. J Pediatr Orthop, 2007, 27(5): 493-498.
|
17. |
Duthon VB. Acute traumatic patellar dislocation. Orthop Traumatol Surg Res, 2015, 101(1 Suppl): S59-S67.
|
18. |
Aitchison AH, Hidalgo Perea S, Schlichte LM, et al. Medial patellofemoral ligament reconstruction with simultaneous osteochondral fracture fixation is an effective treatment for adolescent patellar dislocation with osteochondral fractures. J Child Orthop, 2022, 16(5): 393-400.
|
19. |
Tanos P, Christofides I, Volpin A. The effectiveness of internal fixation in the management of acute chondral fractures. A systematic review. Knee, 2022, 39: 216-226.
|
20. |
Yip CCH, Yip DKH. Patellar microfracture: internal stabilization house-on-stilts technique to achieve better results. Arthrosc Tech, 2022, 11(4): e531-e536.
|
21. |
Friemert B, Oberländer Y, Schwarz W, et al. Diagnosis of chondral lesions of the knee joint: can MRI replace arthroscopy? A prospective study. Knee Surg Sports Traumatol Arthrosc, 2004, 12(1): 58-64.
|
22. |
Milgram JW, Rogers LF, Miller JW. Osteochondral fractures: mechanisms of injury and fate of fragments. AJR Am J Roentgenol, 1978, 130(4): 651-658.
|
23. |
Schlechter JA, Nguyen SV, Fletcher KL. Utility of bioabsorbable fixation of osteochondral lesions in the adolescent knee: outcomes analysis with minimum 2-year follow-up. Orthop J Sports Med, 2019, 7(10): 2325967119876896. doi: 10.1177/2325967119876896.
|
24. |
Gupta PK, Das AK, Chullikana A, et al. Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther, 2012, 3(4): 25. doi: 10.1186/scrt116.
|
25. |
Ha CW, Park YB, Kim SH, et al. Intra-articular mesenchymal stem cells in osteoarthritis of the knee: a systematic review of clinical outcomes and evidence of cartilage repair. Arthroscopy, 2019, 35(1): 277-288.
|
26. |
DePhillipo NN, Hendesi H, Aman ZS, et al. Preclinical use of FGF-18 augmentation for improving cartilage healing following surgical repair: A systematic review. Cartilage, 2023, 14(1): 59-66.
|
27. |
Chen P, Zheng L, Wang Y, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics, 2019, 9(9): 2439-2459.
|
28. |
Zheng Z, Yu D, Wang H, et al. Advancement of 3D biofabrication in repairing and regeneration of cartilage defects. Biofabrication, 2025, 17(2). doi: 10.1088/1758-5090/ada8e1.
|
29. |
Dilley JE, Everhart JS, Klitzman RG. Hyaluronic acid as an adjunct to microfracture in the treatment of osteochondral lesions of the talus: a systematic review of randomized controlled trials. BMC Musculoskelet Disord, 2022, 23(1): 313. doi: 10.1186/s12891-022-05236-6.
|
30. |
Karami P, Laurent A, Philippe V, et al. Cartilage repair: Promise of adhesive orthopedic hydrogels. Int J Mol Sci, 2024, 25(18): 9984. doi: 10.3390/ijms25189984.
|
31. |
Woo I, Park JJ, Seok HG. The efficacy of platelet-rich plasma augmentation in microfracture surgery osteochondral lesions of the talus: a systematic review and meta-analysis. J Clin Med, 2023, 12(15): 4998. doi: 10.3390/jcm12154998.
|
32. |
Lee MJ, Jiang J, Kim SH, et al. Second generation multiple channeling using platelet-rich plasma enhances cartilage repair through recruitment of endogenous MSCs in bone marrow. Stem Cells Transl Med, 2024, 13(12): 1213-1227.
|
33. |
Dines JS, Fealy S, Potter HG, et al. Outcomes of osteochondral lesions of the knee repaired with a bioabsorbable device. Arthroscopy, 2008, 24(1): 62-68.
|
34. |
Kjennvold S, Randsborg PH, Jakobsen RB, et al. Fixation of acute chondral fractures in adolescent knees. Cartilage, 2021, 13(1_suppl): 293S-301S.
|
35. |
Rüther H, Seif Amir Hosseini A, Frosch S, et al. Refixation of osteochondral fragments with resorbable polylactid implants: Long-term clincal and MRI results. Unfallchirurg, 2020, 123(10): 797-806.
|
36. |
Alvarez-Lozano E, Martinez-Rodriguez H, Forriol F. Treatment of chondral knee lesions with autologous chondrocytes embedded in a fibrin scaffold. Clinical and functional assessment. Rev Bras Ortop (Sao Paulo), 2021, 56(4): 470-477.
|
37. |
Calvo R, Figueroa D, Figueroa F, et al. Treatment of patellofemoral chondral lesions using microfractures associated with a chitosan scaffold: mid-term clinical and radiological results. Cartilage, 2021, 13(1_suppl): 1258S-1264S.
|