1. |
Zhang PX, Yin XF, Kou YH, et al. Neural regeneration after peripheral nerve injury repair is a system remodelling process of interaction between nerves and terminal effector. Neural Regen Res, 2015, 10(1): 52. doi: 10.4103/1673-5374.150705.
|
2. |
Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater, 2020, 106: 54-69.
|
3. |
Hu Y, Zhang H, Wei H, et al. Scaffolds with anisotropic structure for neural tissue engineering. Engineered Regeneration, 2022, 3(2): 154-162.
|
4. |
Wang B, Lu CF, Liu ZY, et al. Chitin scaffold combined with autologous small nerve repairs sciatic nerve defects. Neural Regen Res, 2022, 17(5): 1106-1114.
|
5. |
Zhang H, Guo J, Wang Y, et al. Natural polymer-derived bioscaffolds for peripheral nerve regeneration. Advanced Functional Materials, 2022, 32(41): 2203829. doi: 10.1002/adfm.202203829.
|
6. |
Lee TH, Yen CT, Hsu SH. Preparation of polyurethane-graphene nanocomposite and evaluation of neurovascular regeneration. ACS Biomater Sci Eng, 2020, 6(1): 597-609.
|
7. |
Costa Serrão de Araújo G, Couto Neto B, Harley Santos Botelho R, et al. Clinical evaluation after peripheral nerve repair with caprolactone neurotube. Hand (N Y), 2017, 12(2): 168-174.
|
8. |
Vijayavenkataraman S, Zhang S, Thaharah S, et al. Electrohydrodynamic jet 3D printed nerve guide conduits (NGCs) for peripheral nerve injury repair. Polymers (Basel), 2018, 10(7): 753. doi: 10.3390/polym10070753.
|
9. |
Dong R, Liu Y, Yang Y, et al. MSC-derived exosomes-based therapy for peripheral nerve injury: A novel therapeutic strategy. Biomed Res Int, 2019, 2019: 6458237. doi: 10.1155/2019/6458237.
|
10. |
Hatzenbuehler J. Peripheral Nerve Injury. Curr Sports Med Rep, 2015, 14(5): 356-357.
|
11. |
Wijntjes J, Borchert A, van Alfen N. Nerve ultrasound in traumatic and iatrogenic peripheral nerve injury. Diagnostics (Basel), 2020, 11(1): 30. doi: 10.3390/diagnostics11010030.
|
12. |
Robinson LR. Traumatic injury to peripheral nerves. Muscle Nerve, 2000, 23(6): 863-873.
|
13. |
中国康复医学会居家康复专业委员会居家康复指南编写委员会, 世界卫生组织康复合作中心. 周围神经损伤居家康复指南. 中国康复医学杂志, 2022, 37(4): 433-442.
|
14. |
Modrak M, Talukder MAH, Gurgenashvili K, et al. Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res, 2020, 98(5): 780-795.
|
15. |
Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol, 2008, 119(9): 1951-1965.
|
16. |
Miller RG. AAEE minimonograph #28: injury to peripheral motor nerves. Muscle Nerve, 1987, 10(8): 698-710.
|
17. |
Sulaiman W, Gordon T. Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J, 2013, 13(1): 100-108.
|
18. |
Han GH, Peng J, Liu P, et al. Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation. Neural Regen Res, 2019, 14(8): 1343-1351.
|
19. |
Saffari TM, Mathot F, Friedrich PF, et al. Revascularization patterns of nerve allografts in a rat sciatic nerve defect model. J Plast Reconstr Aesthet Surg, 2020, 73(3): 460-468.
|
20. |
Mohammad J, Shenaq J, Rabinovsky E, et al. Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap. Plast Reconstr Surg, 2000, 105(2): 660-666.
|
21. |
Lans J, Eberlin KR, Evans PJ, et al. A systematic review and meta-analysis of nerve gap repair: Comparative effectiveness of allografts, autografts, and conduits. Plast Reconstr Surg, 2023, 151(5): 814e-827e.
|
22. |
李平生, 林国叶, 何向阳, 等. 周围神经损伤的修复治疗. 中国骨伤杂志, 2005, 18(11): 667-669.
|
23. |
Zhang H, Zhang H, Wang H, et al. Natural proteins-derived asymmetric porous conduit for peripheral nerve regeneration. Applied Materials Today, 2022, 27: 101431. doi: 10.1016/j.apmt.2022.101431.
|
24. |
Lin YC, Marra KG. Injectable systems and implantable conduits for peripheral nerve repair. Biomed Mater, 2012, 7(2): 024102. doi: 10.1088/1748-6041/7/2/024102.
|
25. |
Safa B, Jain S, Desai MJ, et al. Peripheral nerve repair throughout the body with processed nerve allografts: Results from a large multicenter study. Microsurgery, 2020, 40(5): 527-537.
|
26. |
龚超, 张玉强, 王伟. 细胞治疗周围神经损伤的作用及机制. 中国组织工程研究, 2022, 26(13): 2216-2221.
|
27. |
Li R, Liu Z, Pan Y, et al. Peripheral nerve injuries treatment: a systematic review. Cell Biochem Biophys, 2014, 68(3): 449-454.
|
28. |
Zennifer A, Thangadurai M, Sundaramurthi D, et al. Additive manufacturing of peripheral nerve conduits - Fabrication methods, design considerations and clinical challenges. SLAS Technol, 2023, 28(3): 102-126.
|
29. |
Navissano M, Malan F, Carnino R, et al. Neurotube for facial nerve repair. Microsurgery, 2005, 25(4): 268-271.
|
30. |
Rbia N, Bulstra LF, Saffari TM, et al. Collagen nerve conduits and processed nerve allografts for the reconstruction of digital nerve gaps: A single-institution case series and review of the literature. World Neurosurg, 2019, 127: e1176-e1184.
|
31. |
Magaz A, Faroni A, Gough JE, et al. Bioactive silk-based nerve guidance conduits for augmenting peripheral nerve repair. Adv Healthc Mater, 2018, 7(23): e1800308. doi: 10.1002/adhm.201800308.
|
32. |
Fountain JN, Hawker MJ, Hartle L, et al. Towards non-stick silk: Tuning the hydrophobicity of silk fibroin protein. Chembiochem, 2022, 23(22): e202200429. doi: 10.1002/cbic.202200429.
|
33. |
Kundu SC, Kundu B, Talukdar S, et al. Invited review nonmulberry silk biopolymers. Biopolymers, 2012, 97(6): 455-467.
|
34. |
Sun W, Gregory DA, Tomeh MA, et al. Silk fibroin as a functional biomaterial for tissue engineering. Int J Mol Sci, 2021, 22(3): 1499. doi: 10.3390/ijms22031499.
|
35. |
Lin DM, Li MQ, Wang LL, et al. Multifunctional hydrogel based on silk fibroin promotes tissue repair and regeneration. Advanced Functional Materials, 2024, 34(39). doi: 10.1002/adfm.202405255.
|
36. |
He YX, Zhang NN, Li WF, et al. N-Terminal domain of Bombyx mori fibroin mediates the assembly of silk in response to pH decrease. J Mol Biol, 2012, 418(3-4): 197-207.
|
37. |
Houshyar S, Bhattacharyya A, Shanks R. Peripheral nerve conduit: Materials and structures. ACS Chem Neurosci, 2019, 10(8): 3349-3365.
|
38. |
Carvalho CR, Oliveira JM, Reis RL. Modern trends for peripheral nerve repair and regeneration: Beyond the hollow nerve guidance conduit. Front Bioeng Biotechnol, 2019, 7: 337. doi: 10.3389/fbioe.2019.00337.
|
39. |
Sun B, Zhou Z, Wu T, et al. Development of nanofiber sponges-containing nerve guidance conduit for peripheral nerve regeneration in vivo. ACS Appl Mater Interfaces, 2017, 9(32): 26684-26696.
|
40. |
Chen YS, Hsieh CL, Tsai CC, et al. Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin and fibronectin. Biomaterials, 2000, 21(15): 1541-1547.
|
41. |
Dinis TM, Elia R, Vidal G, et al. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. J Mech Behav Biomed Mater, 2015, 41: 43-55.
|
42. |
Wieringa P, Tonazzini I, Micera S, et al. Nanotopography induced contact guidance of the F11 cell line during neuronal differentiation: a neuronal model cell line for tissue scaffold development. Nanotechnology, 2012, 23(27): 275102. doi: 10.1088/0957-4484/23/27/275102.
|
43. |
Zhang Q, Zhao Y, Yan S, et al. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Acta Biomater, 2012, 8(7): 2628-2638.
|
44. |
Wang Y, Kong Y, Zhao Y, et al. Electrospun, reinforcing network-containing, silk fibroin-based nerve guidance conduits for peripheral nerve repair. Journal of Biomaterials and Tissue Engineering, 2016, 6(1): 53-60.
|
45. |
Wei GJ, Yao M, Wang YS, et al. Promotion of peripheral nerve regeneration of a peptide compound hydrogel scaffold. Int J Nanomedicine, 2013, 8: 3217-3225.
|
46. |
Xue C, Zhu H, Tan D, et al. Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs. J Tissue Eng Regen Med, 2018, 12(2): e1143-e1153.
|
47. |
Yonesi M, Garcia-Nieto M, Guinea GV, et al. Silk fibroin: An ancient material for repairing the injured nervous system. Pharmaceutics, 2021, 13(3): 429. doi: 10.3390/pharmaceutics13030429.
|
48. |
Tian L, Prabhakaran MP, Hu J, et al. Coaxial electrospun poly (lactic acid)/silk fibroin nanofibers incorporated with nerve growth factor support the differentiation of neuronal stem cells. RSC Advances, 2015, 5(62): 49838-49848.
|
49. |
Bai S, Zhang W, Lu Q, et al. Silk nanofiber hydrogels with tunable modulus to regulate nerve stem cell fate. J Mater Chem B, 2014, 2(38): 6590-6600.
|
50. |
Martín-Martín Y, Fernández-García L, Sanchez-Rebato MH, et al. Evaluation of neurosecretome from mesenchymal stem cells encapsulated in silk fibroin hydrogels. Sci Rep, 2019, 9(1): 8801. doi: 10.1038/s41598-019-45238-4.
|
51. |
Sultan MT, Choi BY, Ajiteru O, et al. Reinforced-hydrogel encapsulated hMSCs towards brain injury treatment by trans-septal approach. Biomaterials, 2021, 266: 120413. doi: 10.1016/j.biomaterials.2020.120413.
|
52. |
Yang C, Li S, Huang X, et al. Silk fibroin hydrogels could be therapeutic biomaterials for neurological diseases. Oxid Med Cell Longev, 2022, 2022: 2076680. doi: 10.1155/2022/2076680.
|
53. |
Chen S, Liu S, Zhang L, et al. Construction of injectable silk fibroin/polydopamine hydrogel for treatment of spinal cord injury. Chemical Engineering Journal, 2020, 399: 125795. doi: 10.1016/j.cej.2020.125795.
|
54. |
Xuan H, Tang X, Zhu Y, et al. Freestanding hyaluronic acid/silk-based self-healing coating toward tissue repair with antibacterial surface. ACS Appl Bio Mater, 2020, 3(3): 1628-1635.
|
55. |
Zhang L, Xu L, Li G, et al. Fabrication of high-strength mecobalamin loaded aligned silk fibroin scaffolds for guiding neuronal orientation. Colloids Surf B Biointerfaces, 2019, 173: 689-697.
|
56. |
Nguyen TP, Nguyen QV, Nguyen VH, et al. Silk fibroin-based biomaterials for biomedical applications: A review. Polymers (Basel), 2019, 11(12): 1933. doi: 10.3390/polym11121933.
|
57. |
Yang Y, Chen X, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials, 2007, 28(9): 1643-1652.
|
58. |
Ziemba AM, Fink TD, Crochiere MC, et al. Coating topologically complex electrospun fibers with nanothin silk fibroin enhances neurite outgrowth in vitro. ACS Biomater Sci Eng, 2020, 6(3): 1321-1332.
|
59. |
林强 蔡李. 负载浓度梯度NGF的周围神经导管修复大鼠周围神经缺损的实验研究. 中国修复重建外科杂志, 28(2): 167-172.
|
60. |
Benfenati V, Stahl K, Gomis-Perez C, et al. Biofunctional silk/neuron interfaces. Advanced Functional Materials, 2012, 22(9): 1871-1884.
|
61. |
Hu J, Jiang Z, Zhang J, et al. Application of silk fibroin coatings for biomaterial surface modification: a silk road for biomedicine. J Zhejiang Univ Sci B, 2023, 24(11): 943-956.
|
62. |
White JD, Wang S, Weiss AS, et al. Silk-tropoelastin protein films for nerve guidance. Acta Biomater, 2015, 14: 1-10.
|