- 1. Tianjin University Tianjin Hospital (Tianjin Hospital), Tianjin, 300211, P. R. China;
- 2. Tianjin Institute of Orthopedics, Tianjin, 300050, P. R. China;
- 3. Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, P. R. China;
Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
1. | Kong H, Wang XQ, Zhang XA. Exercise for osteoarthritis: A literature review of pathology and mechanism. Front Aging Neurosci, 2022, 14: 854026. doi: 10.3389/fnagi.2022.854026. |
2. | Cao H, Zhou XC, Li H, et al. Exercise for osteoarthritis: A global articles bibliometric analysis from 1975 to 2021. Science & Sports, 2023, 38(5-6): 488-497. |
3. | Zeng CY, Zhang ZR, Tang ZM, et al. Benefits and mechanisms of exercise training for knee osteoarthritis. Front Physiol, 2021, 12: 794062. doi: 10.3389/fphys.2021.794062. |
4. | Shao Y, Zhang H, Guan H, et al. PDZK1 protects against mechanical overload-induced chondrocyte senescence and osteoarthritis by targeting mitochondrial function. Bone Res, 2024, 12(1): 41. doi: 10.1038/s41413-024-00344-6. |
5. | Zhang H, Shao Y, Yao Z, et al. Mechanical overloading promotes chondrocyte senescence and osteoarthritis development through downregulating FBXW7. Ann Rheum Dis, 2022, 81(5): 676-686. |
6. | Yan X, Fu S, Xie Y, et al. Piezo1-driven mechanotransduction as a key regulator of cartilage degradation in early osteoarthritis. Biomol Biomed, 2025, 25(4): 905-913. |
7. | Tang W, Yin JB, Lin RG, et al. Rapgef3 modulates macrophage reprogramming and exacerbates synovitis and osteoarthritis under excessive mechanical loading. iScience, 2025, 28(5): 112131. doi: 10.1016/j.isci.2025.112131. |
8. | Castro-Viñuelas R, Viudes-Sarrión N, Rojo-García AV, et al. Mechanical loading rescues mechanoresponsiveness in a human osteoarthritis explant model despite Wnt activation. Osteoarthritis Cartilage, 2025, 33(6): 692-702. |
9. | Zhang M, Meng N, Wang X, et al. TRPV4 and PIEZO channels mediate the mechanosensing of chondrocytes to the biomechanical microenvironment. Membranes (Basel), 2022, 12(2): 237. doi: 10.3390/membranes12020237. |
10. | Berumen-Nafarrate E, Leal-Berumen I, Luevano E, et al. Synovial tissue and synovial fluid. J Knee Surg, 2002, 15(1): 46-48. |
11. | Zhang L, Zhang H, Xie Q, et al. LncRNA-mediated cartilage homeostasis in osteoarthritis: a narrative review. Front Med (Lausanne), 2024, 11: 1326843. doi: 10.3389/fmed.2024.1326843. |
12. | Ghosh S, Choudhury D. Tribological role of synovial fluid compositions on artificial joints - a systematic review of the last 10 years. Lubrication Science, 2014, 26(6): 387-410. |
13. | Jahn S, Seror J, Klein J. Lubrication of articular cartilage. Annu Rev Biomed Eng, 2016, 18: 235-258. |
14. | Marinho A, Nunes C, Reis S. Hyaluronic acid: A key ingredient in the therapy of inflammation. Biomolecules, 2021, 11(10): 1518. doi: 10.3390/biom11101518. |
15. | Sze JH, Brownlie JC, Love CA. Biotechnological production of hyaluronic acid: a mini review. 3 Biotech, 2016, 6(1): 67. doi: 10.1007/s13205-016-0379-9. |
16. | Marcotti S, Maki K, Reilly GC, et al. Hyaluronic acid selective anchoring to the cytoskeleton: An atomic force microscopy study. PLoS One, 2018, 13(10): e0206056. doi: 10.1371/journal.pone.0206056. |
17. | Chen LH, Xue JF, Zheng ZY, et al. Hyaluronic acid, an efficient biomacromolecule for treatment of inflammatory skin and joint diseases: A review of recent developments and critical appraisal of preclinical and clinical investigations. Int J Biol Macromol, 2018, 116: 572-584. |
18. | Fallacara A, Baldini E, Manfredini S, et al. Hyaluronic acid in the third millennium. Polymers (Basel), 2018, 10(7): 701. doi: 10.3390/polym10070701. |
19. | Hasnain S, Abbas I, Al-Atawi NO, et al. Knee synovial fluid flow and heat transfer, a power law model. Sci Rep, 2023, 13(1): 18184. doi: 10.1038/s41598-023-44482-z. |
20. | 陈彦丞, 罗骏, 陈锦成, 等. 长期低温环境对大鼠膝骨关节炎进展的影响. 中华关节外科杂志 (电子版), 2021, 15(1): 71-77. |
21. | Andrysiak T, Bełdowski P, Siódmiak J, et al. Hyaluronan-chondroitin sulfate anomalous crosslinking due to temperature changes. Polymers (Basel), 2018, 10(5): 560. doi: 10.3390/polym10050560. |
22. | Li Y, Yuan Z, Yang H, et al. Recent advances in understanding the role of cartilage lubrication in osteoarthritis. Molecules, 2021, 26(20): 6122. doi: 10.3390/molecules26206122. |
23. | Park JY, Duong CT, Sharma AR, et al. Effects of hyaluronic acid and γ-globulin concentrations on the frictional response of human osteoarthritic articular cartilage. PLoS One, 2014, 9(11): e112684. doi: 10.1371/journal.pone.0112684. |
24. | Bonnevie ED, Galesso D, Secchieri C, et al. Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid. PLoS One, 2015, 10(11): e0143415. doi: 10.1371/journal.pone.0143415. |
25. | Abubacker S, Ham HO, Messersmith PB, et al. Cartilage boundary lubricating ability of aldehyde modified proteoglycan 4 (PRG4-CHO). Osteoarthritis Cartilage, 2013, 21(1): 186-189. |
26. | Shafqat A, Khan JA, Alkachem AY, et al. How neutrophils shape the immune response: reassessing their multifaceted role in health and disease. Int J Mol Sci, 2023, 24(24): 17583. doi: 10.3390/ijms242417583. |
27. | Wright HL, Moots RJ, Bucknall RC, et al. Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford), 2010, 49(9): 1618-1631. |
28. | Bigoni M, Zanchi N, Omeljaniuk RJ, et al. Role of interleukin-10 in the synovial fluid of the anterior cruciate ligament injured knee. Eur Rev Med Pharmacol Sci, 2019, 23(3): 932-940. |
29. | Panayi GS, Corrigall VM. Immunoglobulin heavy-chain-binding protein (BiP): a stress protein that has the potential to be a novel therapy for rheumatoid arthritis. Biochem Soc Trans, 2014, 42(6): 1752-1755. |
30. | Kikodze N, Pantsulaia I, Chikovani T. The role of t regulatory and Th17 cells in the pathogenesis of rheumatoid arthritis (review). Georgian Med News, 2016(261): 62-68. |
31. | Dozio E, Corsi MM, Ruscica M, et al. Adipokine actions on cartilage homeostasis. Adv Clin Chem, 2011, 55: 61-79. |
32. | Iwamoto T, Okamoto H, Toyama Y, et al. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J, 2008, 275(18): 4448-4455. |
33. | Molnar V, Matišić V, Kodvanj I, et al. Cytokines and chemokines involved in osteoarthritis pathogenesis. Int J Mol Sci, 2021, 22(17): 9208. doi: 10.3390/ijms22179208. |
34. | Abramoff B, Caldera FE. Osteoarthritis: Pathology, diagnosis, and treatment options. Med Clin North Am, 2020, 104(2): 293-311. |
35. | Zhu R, Wang Y, Ouyang Z, et al. Targeting regulated chondrocyte death in osteoarthritis therapy. Biochem Pharmacol, 2023, 215: 115707. doi: 10.1016/j.bcp.2023.115707. |
36. | Liu Y, Zhang Z, Fang Y, et al. Ferroptosis in osteoarthritis: Current understanding. J Inflamm Res, 2024, 17: 8471-8486. |
37. | Mei J, Xiao N, Xi Y, et al. Regulation of apoptosis and interaction with cartilage degeneration in osteoarthritis. Front Cell Dev Biol, 2025, 13: 1571448. doi: 10.3389/fcell.2025.1571448. |
38. | Tang L, Ding J, Yang K, et al. New insights into the mechanisms and therapeutic strategies of chondrocyte autophagy in osteoarthritis. J Mol Med (Berl), 2024, 102(10): 1229-1244. |
39. | Woodell-May JE, Sommerfeld SD. Role of Inflammation and the immune system in the progression of osteoarthritis. J Orthop Res, 2020, 38(2): 253-257. |
40. | Zhang H, Cai D, Bai X. Macrophages regulate the progression of osteoarthritis. Osteoarthritis Cartilage, 2020, 28(5): 555-561. |
41. | Fernandes TL, Gomoll AH, Lattermann C, et al. Macrophage: A potential target on cartilage regeneration. Front Immunol, 2020, 11: 111. doi: 10.3389/fimmu.2020.00111. |
42. | Smith MD, Barg E, Weedon H, et al. Microarchitecture and protective mechanisms in synovial tissue from clinically and arthroscopically normal knee joints. Ann Rheum Dis, 2003, 62(4): 303-307. |
43. | Pap T, Dankbar B, Wehmeyer C, et al. Synovial fibroblasts and articular tissue remodelling: Role and mechanisms. Semin Cell Dev Biol, 2020, 101: 140-145. |
44. | Punzi L, Calò L, Plebani M. Clinical significance of cytokine determination in synovial fluid. Crit Rev Clin Lab Sci, 2002, 39(1): 63-88. |
45. | Alstergren P, Benavente C, Kopp S. Interleukin-1beta, interleukin-1 receptor antagonist, and interleukin-1 soluble receptor Ⅱ in temporomandibular joint synovial fluid from patients with chronic polyarthritides. J Oral Maxillofac Surg, 2003, 61(10): 1171-1178. |
46. | Kaneyama K, Segami N, Sun W, et al. Analysis of tumor necrosis factor-alpha, interleukin-6, interleukin-1beta, soluble tumor necrosis factor receptors Ⅰ and Ⅱ, interleukin-6 soluble receptor, interleukin-1 soluble receptor type Ⅱ, interleukin-1 receptor antagonist, and protein in the synovial fluid of patients with temporomandibular joint disorders. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005, 99(3): 276-284. |
47. | Kaneyama K, Segami N, Sato J, et al. Interleukin-6 family of cytokines as biochemical markers of osseous changes in the temporomandibular joint disorders. Br J Oral Maxillofac Surg, 2004, 42(3): 246-250. |
48. | Takahashi T, Kondoh T, Fukuda M, et al. Proinflammatory cytokines detectable in synovial fluids from patients with temporomandibular disorders. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998, 85(2): 135-141. |
49. | El-Arman MM, El-Fayoumi G, El-Shal E, et al. Aggrecan and cartilage oligomeric matrix protein in serum and synovial fluid of patients with knee osteoarthritis. HSS J, 2010, 6(2): 171-176. |
50. | Udomsinprasert W, Panon K, Preechanukul S, et al. Diagnostic value of interleukin-34 as a novel biomarker for severity of knee osteoarthritis. Cartilage, 2021, 13(2_suppl): 1174S-1184S. |
51. | Arellano RD, Aguilar LS, Argüello R, et al. Cartilage oligomeric matrix protein levels in synovial fluid in patients with primary knee osteoarthritis and healthy controls: A preliminary comparative analysis with serum cartilage oligomeric matrix protein. Arch Rheumatol, 2017, 32(3): 189-196. |
52. | Lohmander LS, Saxne T, Heinegård DK. Release of cartilage oligomeric matrix protein (COMP) into joint fluid after knee injury and in osteoarthritis. Ann Rheum Dis, 1994, 53(1): 8-13. |
53. | Fu PJ, Zheng SY, Luo Y, et al. Prg4 and osteoarthritis: Functions, regulatory factors, and treatment strategies. Biomedicines, 2025, 13(3): 693. doi: 10.3390/biomedicines13030693. |
54. | Ludwig TE, McAllister JR, Lun V, et al. Diminished cartilage-lubricating ability of human osteoarthritic synovial fluid deficient in proteoglycan 4: Restoration through proteoglycan 4 supplementation. Arthritis Rheum, 2012, 64(12): 3963-3971. |
55. | Chen K, Huang J, Gong W, et al. Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol, 2007, 7(10): 1271-1285. |
56. | Alquraini A, Garguilo S, D’Souza G, et al. The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: an anti-inflammatory role of PRG4 in synovial fluid. Arthritis Res Ther, 2015, 17: 353. doi: 10.1186/s13075-015-0877-x. |
57. | Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci, 2019, 234: 116786. doi: 10.1016/j.lfs.2019.116786. |
58. | Xin X, Tan Q, Li F, et al. Potential value of matrix metalloproteinase-13 as a biomarker for osteoarthritis. Front Surg, 2021, 8: 750047. doi: 10.3389/fsurg.2021.750047. |
59. | 刘建军, 李元贞, 王多贤, 等. miR-146a介导TLR4/NF-κB信号通路延缓骨关节炎的作用及机制. 中国骨质疏松杂志, 2023, 29(10): 1523-1527. |
60. | Wang Y, Jin Z, Jia S, et al. Mechanical stress protects against chondrocyte pyroptosis through TGF-β1-mediated activation of Smad2/3 and inhibition of the NF-κB signaling pathway in an osteoarthritis model. Biomed Pharmacother, 2023, 159: 114216. doi: 10.1016/j.biopha.2023.114216. |
61. | Estell EG, Murphy LA, Silverstein AM, et al. Fibroblast-like synoviocyte mechanosensitivity to fluid shear is modulated by interleukin-1α. J Biomech, 2017, 60: 91-99. |
62. | Bondarenko VV, Markus IS, Savchenko VM, et al. The effectiveness of physical therapy in the rehabilitation of patients after arthroscopy of the knee joint. Wiad Lek, 2024, 77(6): 1167-1173. |
63. | Segarra-Queralt M, Crump K, Pascuet-Fontanet A, et al. The interplay between biochemical mediators and mechanotransduction in chondrocytes: Unravelling the differential responses in primary knee osteoarthritis. Phys Life Rev, 2024, 48: 205-221. |
64. | 张强, Godfred KTawiah, 张艳君, 等. TRPV4和PIEZOs介导软骨细胞力转导的研究进展. 生物医学工程学杂志, 2023, 40(4): 638-644. |
65. | Hodgkinson T, Kelly DC, Curtin CM, et al. Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol, 2022, 18(2): 67-84. |
66. | Han J, Zhan LN, Huang Y, et al. Moderate mechanical stress suppresses chondrocyte ferroptosis in osteoarthritis by regulating NF-κB p65/GPX4 signaling pathway. Sci Rep, 2024, 14(1): 5078. doi: 10.1038/s41598-024-55629-x. |
67. | Fu B, Shen J, Zou X, et al. Matrix stiffening promotes chondrocyte senescence and the osteoarthritis development through downregulating HDAC3. Bone Res, 2024, 12(1): 32. doi: 10.1038/s41413-024-00333-9. |
68. | Lai Q, Li B, Chen L, et al. Substrate stiffness regulates the proliferation and inflammation of chondrocytes and macrophages through exosomes. Acta Biomater, 2025, 192: 77-89. |
69. | Oka Y, Murata K, Ozone K, et al. Mild treadmill exercise inhibits cartilage degeneration via macrophages in an osteoarthritis mouse model. Osteoarthr Cartil Open, 2023, 5(2): 100359. doi: 10.1016/j.ocarto.2023.100359. |
70. | Zheng W, Li X, Li J, et al. Mechanical loading mitigates osteoarthritis symptoms by regulating the inflammatory microenvironment in a mouse model. Ann N Y Acad Sci, 2022, 1512(1): 141-153. |
71. | Shen P, Jia S, Wang Y, et al. Mechanical stress protects against chondrocyte pyroptosis through lipoxin A4 via synovial macrophage M2 subtype polarization in an osteoarthritis model. Biomed Pharmacother, 2022, 153: 113361. doi: 10.1016/j.biopha.2022.113361. |
72. | Schröder A, Nazet U, Muschter D, et al. Impact of mechanical load on the expression profile of synovial fibroblasts from patients with and without osteoarthritis. Int J Mol Sci, 2019, 20(3): 585. doi: 10.3390/ijms20030585. |
73. | Jamal J, Roebuck MM, Lee SY, et al. Modulation of the mechanical responses of synovial fibroblasts by osteoarthritis-associated inflammatory stressors. Int J Biochem Cell Biol, 2020, 126: 105800. doi: 10.1016/j.biocel.2020.105800. |
74. | Fu S, Meng H, Inamdar S, et al. Activation of TRPV4 by mechanical, osmotic or pharmaceutical stimulation is anti-inflammatory blocking IL-1β mediated articular cartilage matrix destruction. Osteoarthritis Cartilage, 2021, 29(1): 89-99. |
75. | Yanoshita M, Hirose N, Okamoto Y, et al. Cyclic tensile strain upregulates pro-inflammatory cytokine expression via FAK-MAPK signaling in chondrocytes. Inflammation, 2018, 41(5): 1621-1630. |
76. | Yang Y, Wang Y, Kong Y, et al. Mechanical stress protects against osteoarthritis via regulation of the AMPK/NF-κB signaling pathway. J Cell Physiol, 2019, 234(6): 9156-9167. |
77. | Anloague A, Mahoney A, Ogunbekun O, et al. Mechanical stimulation of human dermal fibroblasts regulates pro-inflammatory cytokines: potential insight into soft tissue manual therapies. BMC Research Notes, 2020, 13: 400. doi: 10.1186/s13104-020-05249-1. |
78. | Sciancalepore M, Massaria G, Tramer F, et al. A preliminary study on the role of Piezo1 channels in myokine release from cultured mouse myotubes. Biochem Biophys Res Commun, 2022, 623: 148-153. |
79. | Xu R, Ming D, Ding Z, et al. Extra excitation of biceps femoris during neuromuscular electrical stimulation reduces knee medial loading. R Soc Open Sci, 2019, 6(3): 181545. doi: 10.1098/rsos.181545. |
80. | Alghadir AH, Iqbal ZA, Iqbal A. Knowledge and utilization of manual therapy in the management of knee osteoarthritis by physical therapists in Saudi Arabia: a cross-sectional study. BMC Public Health, 2024, 24(1): 3379. doi: 10.1186/s12889-024-20923-w. |
81. | Ohtsuki T, Shinaoka A, Kumagishi-Shinaoka K, et al. Mechanical strain attenuates cytokine-induced ADAMTS9 expression via transient receptor potential vanilloid type 1. Exp Cell Res, 2019, 383(2): 111556. doi: 10.1016/j.yexcr.2019.111556. |
82. | Ohtsuki T, Hatipoglu OF, Asano K, et al. Induction of CEMIP in chondrocytes by inflammatory cytokines: Underlying mechanisms and potential involvement in osteoarthritis. Int J Mol Sci, 2020, 21(9): 3140. doi: 10.3390/ijms21093140. |
83. | Zhang J, Hao X, Chi R, et al. Moderate mechanical stress suppresses the IL-1β-induced chondrocyte apoptosis by regulating mitochondrial dynamics. J Cell Physiol, 2021, 236(11): 7504-7515. |
84. | Zhao J, Xia Y. Low shear stress protects chondrocytes from IL-1β-induced apoptosis by activating ERK5/KLF4 signaling and negatively regulating miR-143-3p. J Orthop Surg Res, 2024, 19(1): 656. doi: 10.1186/s13018-024-05140-w. |
85. | Torzilli PA, Hubbard RB, Pecorari IL. Squeeze-film properties of synovial fluid and hyaluronate-based viscosupplements. Biomech Model Mechanobiol, 2021, 20(5): 1919-1940. |
86. | Cai G, Lu Y, Zhong W, et al. Piezo1-mediated M2 macrophage mechanotransduction enhances bone formation through secretion and activation of transforming growth factor-β1. Cell Prolif, 2023, 56(9): e13440. doi: 10.1111/cpr.13440. |
87. | Woods S, Humphreys PA, Bates N, et al. Regulation of TGFβ signalling by TRPV4 in chondrocytes. Cells, 2021, 10(4): 726. doi: 10.3390/cells10040726. |
88. | Xie Y, Qian Y, Wang Y, et al. Mechanical stretch and LPS affect the proliferation, extracellular matrix remodeling and viscoelasticity of lung fibroblasts. Exp Ther Med, 2020, 20(5): 5. doi: 10.3892/etm.2020.9133. |
89. | Capuana E, Marino D, Di Gesù R, et al. A high-throughput mechanical activator for cartilage engineering enables rapid screening of in vitro response of tissue models to physiological and supra-physiological loads. Cells Tissues Organs, 2022, 211(6): 670-688. |
90. | Hyldahl RD, Evans A, Kwon S, et al. Running decreases knee intra-articular cytokine and cartilage oligomeric matrix concentrations: a pilot study. Eur J Appl Physiol, 2016, 116(11-12): 2305-2314. |
91. | Helmark IC, Petersen MC, Christensen HE, et al. Moderate loading of the human osteoarthritic knee joint leads to lowering of intraarticular cartilage oligomeric matrix protein. Rheumatol Int, 2012, 32(4): 1009-1014. |
92. | Roos H, Dahlberg L, Hoerrner LA, et al. Markers of cartilage matrix metabolism in human joint fluid and serum: the effect of exercise. Osteoarthritis Cartilage, 1995, 3(1): 7-14. |
93. | Abusara Z, Krawetz R, Steele B, et al. Muscular loading of joints triggers cellular secretion of PRG4 into the joint fluid. J Biomech, 2013, 46(7): 1225-1230. |
94. | Brama PA, van den Boom R, DeGroott J, et al. Collagenase-1 (MMP-1) activity in equine synovial fluid: influence of age, joint pathology, exercise and repeated arthrocentesis. Equine Vet J, 2004, 36(1): 34-40. |
- 1. Kong H, Wang XQ, Zhang XA. Exercise for osteoarthritis: A literature review of pathology and mechanism. Front Aging Neurosci, 2022, 14: 854026. doi: 10.3389/fnagi.2022.854026.
- 2. Cao H, Zhou XC, Li H, et al. Exercise for osteoarthritis: A global articles bibliometric analysis from 1975 to 2021. Science & Sports, 2023, 38(5-6): 488-497.
- 3. Zeng CY, Zhang ZR, Tang ZM, et al. Benefits and mechanisms of exercise training for knee osteoarthritis. Front Physiol, 2021, 12: 794062. doi: 10.3389/fphys.2021.794062.
- 4. Shao Y, Zhang H, Guan H, et al. PDZK1 protects against mechanical overload-induced chondrocyte senescence and osteoarthritis by targeting mitochondrial function. Bone Res, 2024, 12(1): 41. doi: 10.1038/s41413-024-00344-6.
- 5. Zhang H, Shao Y, Yao Z, et al. Mechanical overloading promotes chondrocyte senescence and osteoarthritis development through downregulating FBXW7. Ann Rheum Dis, 2022, 81(5): 676-686.
- 6. Yan X, Fu S, Xie Y, et al. Piezo1-driven mechanotransduction as a key regulator of cartilage degradation in early osteoarthritis. Biomol Biomed, 2025, 25(4): 905-913.
- 7. Tang W, Yin JB, Lin RG, et al. Rapgef3 modulates macrophage reprogramming and exacerbates synovitis and osteoarthritis under excessive mechanical loading. iScience, 2025, 28(5): 112131. doi: 10.1016/j.isci.2025.112131.
- 8. Castro-Viñuelas R, Viudes-Sarrión N, Rojo-García AV, et al. Mechanical loading rescues mechanoresponsiveness in a human osteoarthritis explant model despite Wnt activation. Osteoarthritis Cartilage, 2025, 33(6): 692-702.
- 9. Zhang M, Meng N, Wang X, et al. TRPV4 and PIEZO channels mediate the mechanosensing of chondrocytes to the biomechanical microenvironment. Membranes (Basel), 2022, 12(2): 237. doi: 10.3390/membranes12020237.
- 10. Berumen-Nafarrate E, Leal-Berumen I, Luevano E, et al. Synovial tissue and synovial fluid. J Knee Surg, 2002, 15(1): 46-48.
- 11. Zhang L, Zhang H, Xie Q, et al. LncRNA-mediated cartilage homeostasis in osteoarthritis: a narrative review. Front Med (Lausanne), 2024, 11: 1326843. doi: 10.3389/fmed.2024.1326843.
- 12. Ghosh S, Choudhury D. Tribological role of synovial fluid compositions on artificial joints - a systematic review of the last 10 years. Lubrication Science, 2014, 26(6): 387-410.
- 13. Jahn S, Seror J, Klein J. Lubrication of articular cartilage. Annu Rev Biomed Eng, 2016, 18: 235-258.
- 14. Marinho A, Nunes C, Reis S. Hyaluronic acid: A key ingredient in the therapy of inflammation. Biomolecules, 2021, 11(10): 1518. doi: 10.3390/biom11101518.
- 15. Sze JH, Brownlie JC, Love CA. Biotechnological production of hyaluronic acid: a mini review. 3 Biotech, 2016, 6(1): 67. doi: 10.1007/s13205-016-0379-9.
- 16. Marcotti S, Maki K, Reilly GC, et al. Hyaluronic acid selective anchoring to the cytoskeleton: An atomic force microscopy study. PLoS One, 2018, 13(10): e0206056. doi: 10.1371/journal.pone.0206056.
- 17. Chen LH, Xue JF, Zheng ZY, et al. Hyaluronic acid, an efficient biomacromolecule for treatment of inflammatory skin and joint diseases: A review of recent developments and critical appraisal of preclinical and clinical investigations. Int J Biol Macromol, 2018, 116: 572-584.
- 18. Fallacara A, Baldini E, Manfredini S, et al. Hyaluronic acid in the third millennium. Polymers (Basel), 2018, 10(7): 701. doi: 10.3390/polym10070701.
- 19. Hasnain S, Abbas I, Al-Atawi NO, et al. Knee synovial fluid flow and heat transfer, a power law model. Sci Rep, 2023, 13(1): 18184. doi: 10.1038/s41598-023-44482-z.
- 20. 陈彦丞, 罗骏, 陈锦成, 等. 长期低温环境对大鼠膝骨关节炎进展的影响. 中华关节外科杂志 (电子版), 2021, 15(1): 71-77.
- 21. Andrysiak T, Bełdowski P, Siódmiak J, et al. Hyaluronan-chondroitin sulfate anomalous crosslinking due to temperature changes. Polymers (Basel), 2018, 10(5): 560. doi: 10.3390/polym10050560.
- 22. Li Y, Yuan Z, Yang H, et al. Recent advances in understanding the role of cartilage lubrication in osteoarthritis. Molecules, 2021, 26(20): 6122. doi: 10.3390/molecules26206122.
- 23. Park JY, Duong CT, Sharma AR, et al. Effects of hyaluronic acid and γ-globulin concentrations on the frictional response of human osteoarthritic articular cartilage. PLoS One, 2014, 9(11): e112684. doi: 10.1371/journal.pone.0112684.
- 24. Bonnevie ED, Galesso D, Secchieri C, et al. Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid. PLoS One, 2015, 10(11): e0143415. doi: 10.1371/journal.pone.0143415.
- 25. Abubacker S, Ham HO, Messersmith PB, et al. Cartilage boundary lubricating ability of aldehyde modified proteoglycan 4 (PRG4-CHO). Osteoarthritis Cartilage, 2013, 21(1): 186-189.
- 26. Shafqat A, Khan JA, Alkachem AY, et al. How neutrophils shape the immune response: reassessing their multifaceted role in health and disease. Int J Mol Sci, 2023, 24(24): 17583. doi: 10.3390/ijms242417583.
- 27. Wright HL, Moots RJ, Bucknall RC, et al. Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford), 2010, 49(9): 1618-1631.
- 28. Bigoni M, Zanchi N, Omeljaniuk RJ, et al. Role of interleukin-10 in the synovial fluid of the anterior cruciate ligament injured knee. Eur Rev Med Pharmacol Sci, 2019, 23(3): 932-940.
- 29. Panayi GS, Corrigall VM. Immunoglobulin heavy-chain-binding protein (BiP): a stress protein that has the potential to be a novel therapy for rheumatoid arthritis. Biochem Soc Trans, 2014, 42(6): 1752-1755.
- 30. Kikodze N, Pantsulaia I, Chikovani T. The role of t regulatory and Th17 cells in the pathogenesis of rheumatoid arthritis (review). Georgian Med News, 2016(261): 62-68.
- 31. Dozio E, Corsi MM, Ruscica M, et al. Adipokine actions on cartilage homeostasis. Adv Clin Chem, 2011, 55: 61-79.
- 32. Iwamoto T, Okamoto H, Toyama Y, et al. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J, 2008, 275(18): 4448-4455.
- 33. Molnar V, Matišić V, Kodvanj I, et al. Cytokines and chemokines involved in osteoarthritis pathogenesis. Int J Mol Sci, 2021, 22(17): 9208. doi: 10.3390/ijms22179208.
- 34. Abramoff B, Caldera FE. Osteoarthritis: Pathology, diagnosis, and treatment options. Med Clin North Am, 2020, 104(2): 293-311.
- 35. Zhu R, Wang Y, Ouyang Z, et al. Targeting regulated chondrocyte death in osteoarthritis therapy. Biochem Pharmacol, 2023, 215: 115707. doi: 10.1016/j.bcp.2023.115707.
- 36. Liu Y, Zhang Z, Fang Y, et al. Ferroptosis in osteoarthritis: Current understanding. J Inflamm Res, 2024, 17: 8471-8486.
- 37. Mei J, Xiao N, Xi Y, et al. Regulation of apoptosis and interaction with cartilage degeneration in osteoarthritis. Front Cell Dev Biol, 2025, 13: 1571448. doi: 10.3389/fcell.2025.1571448.
- 38. Tang L, Ding J, Yang K, et al. New insights into the mechanisms and therapeutic strategies of chondrocyte autophagy in osteoarthritis. J Mol Med (Berl), 2024, 102(10): 1229-1244.
- 39. Woodell-May JE, Sommerfeld SD. Role of Inflammation and the immune system in the progression of osteoarthritis. J Orthop Res, 2020, 38(2): 253-257.
- 40. Zhang H, Cai D, Bai X. Macrophages regulate the progression of osteoarthritis. Osteoarthritis Cartilage, 2020, 28(5): 555-561.
- 41. Fernandes TL, Gomoll AH, Lattermann C, et al. Macrophage: A potential target on cartilage regeneration. Front Immunol, 2020, 11: 111. doi: 10.3389/fimmu.2020.00111.
- 42. Smith MD, Barg E, Weedon H, et al. Microarchitecture and protective mechanisms in synovial tissue from clinically and arthroscopically normal knee joints. Ann Rheum Dis, 2003, 62(4): 303-307.
- 43. Pap T, Dankbar B, Wehmeyer C, et al. Synovial fibroblasts and articular tissue remodelling: Role and mechanisms. Semin Cell Dev Biol, 2020, 101: 140-145.
- 44. Punzi L, Calò L, Plebani M. Clinical significance of cytokine determination in synovial fluid. Crit Rev Clin Lab Sci, 2002, 39(1): 63-88.
- 45. Alstergren P, Benavente C, Kopp S. Interleukin-1beta, interleukin-1 receptor antagonist, and interleukin-1 soluble receptor Ⅱ in temporomandibular joint synovial fluid from patients with chronic polyarthritides. J Oral Maxillofac Surg, 2003, 61(10): 1171-1178.
- 46. Kaneyama K, Segami N, Sun W, et al. Analysis of tumor necrosis factor-alpha, interleukin-6, interleukin-1beta, soluble tumor necrosis factor receptors Ⅰ and Ⅱ, interleukin-6 soluble receptor, interleukin-1 soluble receptor type Ⅱ, interleukin-1 receptor antagonist, and protein in the synovial fluid of patients with temporomandibular joint disorders. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005, 99(3): 276-284.
- 47. Kaneyama K, Segami N, Sato J, et al. Interleukin-6 family of cytokines as biochemical markers of osseous changes in the temporomandibular joint disorders. Br J Oral Maxillofac Surg, 2004, 42(3): 246-250.
- 48. Takahashi T, Kondoh T, Fukuda M, et al. Proinflammatory cytokines detectable in synovial fluids from patients with temporomandibular disorders. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998, 85(2): 135-141.
- 49. El-Arman MM, El-Fayoumi G, El-Shal E, et al. Aggrecan and cartilage oligomeric matrix protein in serum and synovial fluid of patients with knee osteoarthritis. HSS J, 2010, 6(2): 171-176.
- 50. Udomsinprasert W, Panon K, Preechanukul S, et al. Diagnostic value of interleukin-34 as a novel biomarker for severity of knee osteoarthritis. Cartilage, 2021, 13(2_suppl): 1174S-1184S.
- 51. Arellano RD, Aguilar LS, Argüello R, et al. Cartilage oligomeric matrix protein levels in synovial fluid in patients with primary knee osteoarthritis and healthy controls: A preliminary comparative analysis with serum cartilage oligomeric matrix protein. Arch Rheumatol, 2017, 32(3): 189-196.
- 52. Lohmander LS, Saxne T, Heinegård DK. Release of cartilage oligomeric matrix protein (COMP) into joint fluid after knee injury and in osteoarthritis. Ann Rheum Dis, 1994, 53(1): 8-13.
- 53. Fu PJ, Zheng SY, Luo Y, et al. Prg4 and osteoarthritis: Functions, regulatory factors, and treatment strategies. Biomedicines, 2025, 13(3): 693. doi: 10.3390/biomedicines13030693.
- 54. Ludwig TE, McAllister JR, Lun V, et al. Diminished cartilage-lubricating ability of human osteoarthritic synovial fluid deficient in proteoglycan 4: Restoration through proteoglycan 4 supplementation. Arthritis Rheum, 2012, 64(12): 3963-3971.
- 55. Chen K, Huang J, Gong W, et al. Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol, 2007, 7(10): 1271-1285.
- 56. Alquraini A, Garguilo S, D’Souza G, et al. The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: an anti-inflammatory role of PRG4 in synovial fluid. Arthritis Res Ther, 2015, 17: 353. doi: 10.1186/s13075-015-0877-x.
- 57. Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci, 2019, 234: 116786. doi: 10.1016/j.lfs.2019.116786.
- 58. Xin X, Tan Q, Li F, et al. Potential value of matrix metalloproteinase-13 as a biomarker for osteoarthritis. Front Surg, 2021, 8: 750047. doi: 10.3389/fsurg.2021.750047.
- 59. 刘建军, 李元贞, 王多贤, 等. miR-146a介导TLR4/NF-κB信号通路延缓骨关节炎的作用及机制. 中国骨质疏松杂志, 2023, 29(10): 1523-1527.
- 60. Wang Y, Jin Z, Jia S, et al. Mechanical stress protects against chondrocyte pyroptosis through TGF-β1-mediated activation of Smad2/3 and inhibition of the NF-κB signaling pathway in an osteoarthritis model. Biomed Pharmacother, 2023, 159: 114216. doi: 10.1016/j.biopha.2023.114216.
- 61. Estell EG, Murphy LA, Silverstein AM, et al. Fibroblast-like synoviocyte mechanosensitivity to fluid shear is modulated by interleukin-1α. J Biomech, 2017, 60: 91-99.
- 62. Bondarenko VV, Markus IS, Savchenko VM, et al. The effectiveness of physical therapy in the rehabilitation of patients after arthroscopy of the knee joint. Wiad Lek, 2024, 77(6): 1167-1173.
- 63. Segarra-Queralt M, Crump K, Pascuet-Fontanet A, et al. The interplay between biochemical mediators and mechanotransduction in chondrocytes: Unravelling the differential responses in primary knee osteoarthritis. Phys Life Rev, 2024, 48: 205-221.
- 64. 张强, Godfred KTawiah, 张艳君, 等. TRPV4和PIEZOs介导软骨细胞力转导的研究进展. 生物医学工程学杂志, 2023, 40(4): 638-644.
- 65. Hodgkinson T, Kelly DC, Curtin CM, et al. Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol, 2022, 18(2): 67-84.
- 66. Han J, Zhan LN, Huang Y, et al. Moderate mechanical stress suppresses chondrocyte ferroptosis in osteoarthritis by regulating NF-κB p65/GPX4 signaling pathway. Sci Rep, 2024, 14(1): 5078. doi: 10.1038/s41598-024-55629-x.
- 67. Fu B, Shen J, Zou X, et al. Matrix stiffening promotes chondrocyte senescence and the osteoarthritis development through downregulating HDAC3. Bone Res, 2024, 12(1): 32. doi: 10.1038/s41413-024-00333-9.
- 68. Lai Q, Li B, Chen L, et al. Substrate stiffness regulates the proliferation and inflammation of chondrocytes and macrophages through exosomes. Acta Biomater, 2025, 192: 77-89.
- 69. Oka Y, Murata K, Ozone K, et al. Mild treadmill exercise inhibits cartilage degeneration via macrophages in an osteoarthritis mouse model. Osteoarthr Cartil Open, 2023, 5(2): 100359. doi: 10.1016/j.ocarto.2023.100359.
- 70. Zheng W, Li X, Li J, et al. Mechanical loading mitigates osteoarthritis symptoms by regulating the inflammatory microenvironment in a mouse model. Ann N Y Acad Sci, 2022, 1512(1): 141-153.
- 71. Shen P, Jia S, Wang Y, et al. Mechanical stress protects against chondrocyte pyroptosis through lipoxin A4 via synovial macrophage M2 subtype polarization in an osteoarthritis model. Biomed Pharmacother, 2022, 153: 113361. doi: 10.1016/j.biopha.2022.113361.
- 72. Schröder A, Nazet U, Muschter D, et al. Impact of mechanical load on the expression profile of synovial fibroblasts from patients with and without osteoarthritis. Int J Mol Sci, 2019, 20(3): 585. doi: 10.3390/ijms20030585.
- 73. Jamal J, Roebuck MM, Lee SY, et al. Modulation of the mechanical responses of synovial fibroblasts by osteoarthritis-associated inflammatory stressors. Int J Biochem Cell Biol, 2020, 126: 105800. doi: 10.1016/j.biocel.2020.105800.
- 74. Fu S, Meng H, Inamdar S, et al. Activation of TRPV4 by mechanical, osmotic or pharmaceutical stimulation is anti-inflammatory blocking IL-1β mediated articular cartilage matrix destruction. Osteoarthritis Cartilage, 2021, 29(1): 89-99.
- 75. Yanoshita M, Hirose N, Okamoto Y, et al. Cyclic tensile strain upregulates pro-inflammatory cytokine expression via FAK-MAPK signaling in chondrocytes. Inflammation, 2018, 41(5): 1621-1630.
- 76. Yang Y, Wang Y, Kong Y, et al. Mechanical stress protects against osteoarthritis via regulation of the AMPK/NF-κB signaling pathway. J Cell Physiol, 2019, 234(6): 9156-9167.
- 77. Anloague A, Mahoney A, Ogunbekun O, et al. Mechanical stimulation of human dermal fibroblasts regulates pro-inflammatory cytokines: potential insight into soft tissue manual therapies. BMC Research Notes, 2020, 13: 400. doi: 10.1186/s13104-020-05249-1.
- 78. Sciancalepore M, Massaria G, Tramer F, et al. A preliminary study on the role of Piezo1 channels in myokine release from cultured mouse myotubes. Biochem Biophys Res Commun, 2022, 623: 148-153.
- 79. Xu R, Ming D, Ding Z, et al. Extra excitation of biceps femoris during neuromuscular electrical stimulation reduces knee medial loading. R Soc Open Sci, 2019, 6(3): 181545. doi: 10.1098/rsos.181545.
- 80. Alghadir AH, Iqbal ZA, Iqbal A. Knowledge and utilization of manual therapy in the management of knee osteoarthritis by physical therapists in Saudi Arabia: a cross-sectional study. BMC Public Health, 2024, 24(1): 3379. doi: 10.1186/s12889-024-20923-w.
- 81. Ohtsuki T, Shinaoka A, Kumagishi-Shinaoka K, et al. Mechanical strain attenuates cytokine-induced ADAMTS9 expression via transient receptor potential vanilloid type 1. Exp Cell Res, 2019, 383(2): 111556. doi: 10.1016/j.yexcr.2019.111556.
- 82. Ohtsuki T, Hatipoglu OF, Asano K, et al. Induction of CEMIP in chondrocytes by inflammatory cytokines: Underlying mechanisms and potential involvement in osteoarthritis. Int J Mol Sci, 2020, 21(9): 3140. doi: 10.3390/ijms21093140.
- 83. Zhang J, Hao X, Chi R, et al. Moderate mechanical stress suppresses the IL-1β-induced chondrocyte apoptosis by regulating mitochondrial dynamics. J Cell Physiol, 2021, 236(11): 7504-7515.
- 84. Zhao J, Xia Y. Low shear stress protects chondrocytes from IL-1β-induced apoptosis by activating ERK5/KLF4 signaling and negatively regulating miR-143-3p. J Orthop Surg Res, 2024, 19(1): 656. doi: 10.1186/s13018-024-05140-w.
- 85. Torzilli PA, Hubbard RB, Pecorari IL. Squeeze-film properties of synovial fluid and hyaluronate-based viscosupplements. Biomech Model Mechanobiol, 2021, 20(5): 1919-1940.
- 86. Cai G, Lu Y, Zhong W, et al. Piezo1-mediated M2 macrophage mechanotransduction enhances bone formation through secretion and activation of transforming growth factor-β1. Cell Prolif, 2023, 56(9): e13440. doi: 10.1111/cpr.13440.
- 87. Woods S, Humphreys PA, Bates N, et al. Regulation of TGFβ signalling by TRPV4 in chondrocytes. Cells, 2021, 10(4): 726. doi: 10.3390/cells10040726.
- 88. Xie Y, Qian Y, Wang Y, et al. Mechanical stretch and LPS affect the proliferation, extracellular matrix remodeling and viscoelasticity of lung fibroblasts. Exp Ther Med, 2020, 20(5): 5. doi: 10.3892/etm.2020.9133.
- 89. Capuana E, Marino D, Di Gesù R, et al. A high-throughput mechanical activator for cartilage engineering enables rapid screening of in vitro response of tissue models to physiological and supra-physiological loads. Cells Tissues Organs, 2022, 211(6): 670-688.
- 90. Hyldahl RD, Evans A, Kwon S, et al. Running decreases knee intra-articular cytokine and cartilage oligomeric matrix concentrations: a pilot study. Eur J Appl Physiol, 2016, 116(11-12): 2305-2314.
- 91. Helmark IC, Petersen MC, Christensen HE, et al. Moderate loading of the human osteoarthritic knee joint leads to lowering of intraarticular cartilage oligomeric matrix protein. Rheumatol Int, 2012, 32(4): 1009-1014.
- 92. Roos H, Dahlberg L, Hoerrner LA, et al. Markers of cartilage matrix metabolism in human joint fluid and serum: the effect of exercise. Osteoarthritis Cartilage, 1995, 3(1): 7-14.
- 93. Abusara Z, Krawetz R, Steele B, et al. Muscular loading of joints triggers cellular secretion of PRG4 into the joint fluid. J Biomech, 2013, 46(7): 1225-1230.
- 94. Brama PA, van den Boom R, DeGroott J, et al. Collagenase-1 (MMP-1) activity in equine synovial fluid: influence of age, joint pathology, exercise and repeated arthrocentesis. Equine Vet J, 2004, 36(1): 34-40.