- Department of Sports Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650032, P. R. China;
Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
1. | Logterman SL, Wydra FB, Frank RM. Posterior cruciate ligament: Anatomy and biomechanics. Curr Rev Musculoskelet Med, 2018, 11(3): 510-514. |
2. | Bingol I, Oktem U, Kaymakoglu M, et al. PCL injury following high energy trauma: associated injuries and postoperative complications “insights from a national registry study”. J Orthop Surg Res, 2024, 19(1): 490. doi: 10.1186/s13018-024-04927-1. |
3. | Brown JS, Mogianos K, Roemer FW, et al. Clinical, patient-reported, radiographic and magnetic resonance imaging findings 11 years after acute posterior cruciate ligament injury treated non-surgically. BMC Musculoskelet Disord, 2023, 24(1): 365. doi: 10.1186/s12891-023-06480-0. |
4. | Sanders TL, Pareek A, Barrett IJ, et al. Incidence and long-term follow-up of isolated posterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc, 2017, 25(10): 3017-3023. |
5. | Schroven W, Vles G, Verhaegen J, et al. Operative management of isolated posterior cruciate ligament injuries improves stability and reduces the incidence of secondary osteoarthritis: a systematic review. Knee Surg Sports Traumatol Arthrosc, 2022, 30(5): 1733-1743. |
6. | Wind WM Jr, Bergfeld JA, Parker RD. Evaluation and treatment of posterior cruciate ligament injuries: revisited. Am J Sports Med, 2004, 32(7): 1765-1775. |
7. | Ahn S, Lee YS, Song YD, et al. Does surgical reconstruction produce better stability than conservative treatment in the isolated PCL injuries? Arch Orthop Trauma Surg, 2016, 136(6): 811-819. |
8. | Gwinner C, Jung TM, Schatka I, et al. Posterior laxity increases over time after PCL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2019, 27(2): 389-396. |
9. | Loeb AE, Ithurburn MP, Kidwell-Chandler A, et al. Technique and outcomes of posterior cruciate ligament repair with augmentation. Orthop J Sports Med, 2024, 12(1): 23259671231213988. doi: 10.1177/23259671231213988. |
10. | Oehme S, Moewis P, Boeth H, et al. PCL insufficient patients with increased translational and rotational passive knee joint laxity have no increased range of anterior-posterior and rotational tibiofemoral motion during level walking. Sci Rep, 2022, 12(1): 13232. doi: 10.1038/s41598-022-17328-3. |
11. | Krott NL, Wengle L, Whelan D, et al. Single and double bundle posterior cruciate ligament reconstruction yield comparable clinical and functional outcomes: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc, 2022, 30(7): 2388-2399. |
12. | Ochiai S, Hagino T, Senga S, et al. Treatment Outcome of Reconstruction for isolated posterior cruciate injury: Subjective and objective evaluations. J Knee Surg, 2019, 32(6): 506-512. |
13. | Kim YM, Lee CA, Matava MJ. Clinical results of arthroscopic single-bundle transtibial posterior cruciate ligament reconstruction: a systematic review. Am J Sports Med, 2011, 39(2): 425-434. |
14. | Marom N, Ruzbarsky JJ, Boyle C, et al. Complications in posterior cruciate ligament injuries and related surgery. Sports Med Arthrosc Rev, 2020, 28(1): 30-33. |
15. | Morita Y, Tajima T, Yamaguchi N, et al. Risk factors of failure results after double-bundle reconstruction with autogenous hamstring grafts for isolated posterior cruciate ligament rupture cases. Sci Rep, 2024, 14(1): 6192. doi: 10.1038/s41598-024-56953-y. |
16. | 赵正吕, 李彦林, 王旭, 等. 后交叉韧带重建移植物的特点与选择. 中国组织工程研究, 2022, 26(10): 1615-1619. |
17. | Cugat R, Alentorn-Geli E, Cuscó X, et al. Articulated bone block for posterior cruciate ligament reconstruction using bone-patellar tendon-bone autograft: Surgical technique to facilitate graft passage. Arthrosc Tech, 2018, 7(2): e131-e137. |
18. | Hiraga Y, Ishibashi Y, Tsuda E, et al. Biomechanical comparison of posterior cruciate ligament reconstruction techniques using cyclic loading tests. Knee Surg Sports Traumatol Arthrosc, 2006, 14(1): 13-19. |
19. | Sollberger VD, Korthaus A, Barg A, et al. Long-term results after anterior cruciate ligament reconstruction using patellar tendon versus hamstring tendon autograft with a minimum follow-up of 10 years-a systematic review. Arch Orthop Trauma Surg, 2023, 143(7): 4277-4289. |
20. | Johnson P, Mitchell SM, Görtz S. Graft considerations in posterior cruciate ligament reconstruction. Curr Rev Musculoskelet Med, 2018, 11(3): 521-527. |
21. | Dai W, Leng X, Wang J, et al. Quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring tendon autografts for anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Am J Sports Med, 2022, 50(12): 3425-3439. |
22. | Migliorini F, Pintore A, Oliva F, et al. Allografts as alternative to autografts in primary posterior cruciate ligament reconstruction: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc, 2023, 31(7): 2852-2860. |
23. | Belk JW, Kraeutler MJ, Purcell JM, et al. Autograft versus allograft for posterior cruciate ligament reconstruction: An updated systematic review and meta-analysis. Am J Sports Med, 2018, 46(7): 1752-1757. |
24. | Balsly CR, Cotter AT, Williams LA, et al. Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts. Cell Tissue Bank, 2008, 9(4): 289-298. |
25. | Bourgeault-Gagnon Y, Leang AK, Bédard S, et al. Estimated diameter increase from a 4S to a 6S hamstring graft configuration-A cadaveric study. SICOT J, 2023, 9: 34. doi: 10.1051/sicotj/2023033. |
26. | Li J, Wang J, Li Y, et al. A prospective randomized study of anterior cruciate ligament reconstruction with autograft, γ-irradiated allograft, and hybrid graft. Arthroscopy, 2015, 31(7): 1296-1302. |
27. | Li J, Kong F, Gao X, et al. Prospective randomized comparison of knee stability and proprioception for posterior cruciate ligament reconstruction with autograft, hybrid graft, and γ-irradiated allograft. Arthroscopy, 2016, 32(12): 2548-2555. |
28. | Trasolini NA, Rick Hatch GF. Suture augmentation: An alternative to reconstruction for incomplete posterior cruciate ligament injuries in the multiple ligament-injured knee. Arthrosc Tech, 2018, 7(3): e239-e243. |
29. | Trasolini NA, Hatch GF, Wright D, et al. Posterior cruciate ligament reconstruction with internal brace augmentation reduces posterior tibial translation under cyclic loading. Orthopedics, 2021, 44(4): 235-240. |
30. | Levy BA, Piepenbrink M, Stuart MJ, et al. Posterior cruciate ligament reconstruction with independent suture tape reinforcement: An in vitro biomechanical full construct study. Orthop J Sports Med, 2021, 9(2): 2325967120981875. doi: 10.1177/2325967120981875. |
31. | Zhang H, Wang J, Gao Y, et al. Suture tape augmentation improves posterior stability after isolated posterior cruciate ligament reconstruction using hamstring tendon autograft with single-bundle transtibial technique. Arthroscopy, 2024, 40(7): 2045-2054. |
32. | Zhao X, Duan MY, Chen SQ, et al. Posterior cruciate ligament reconstruction with independent internal brace reinforcement: surgical technique and clinical outcomes with a minimum two year follow-up. Int Orthop, 2022, 46(9): 2019-2028. |
33. | 熊波涵, 卢晓君, 薛文强, 等. 内减张技术辅助前交叉韧带重建对滇南小耳猪关节软骨的保护作用. 中国组织工程研究, 2024, 28(14): 2221-2226. |
34. | 熊波涵, 王国梁, 余洋, 等. 内减张技术辅助前交叉韧带重建促进滇南小耳猪跟腱移植物韧带化. 中国组织工程研究, 2025, 29(4): 713-720. |
35. | Xiong B, Yu Y, Xie B, et al. Clinical efficacy and kinematic analysis of Chinese knotting technique-assisted posterior cruciate ligament reconstruction: A retrospective analysis. Medicine (Baltimore), 2024, 103(17): e37840. doi: 10.1097/MD.0000000000037840. |
36. | Joshi A, Sable A, Usman S, et al. Chronic reactive synovitis in patients undergoing ACL reconstruction and augmentation with tape-type sutures. J Clin Orthop Trauma, 2024, 61: 102884. doi: 10.1016/j.jcot.2024.102884. |
37. | Lessim S, Migonney V, Thoreux P, et al. PolyNaSS bioactivation of LARS artificial ligament promotes human ligament fibroblast colonisation in vitro. Biomed Mater Eng, 2013, 23(4): 289-297. |
38. | Shen G, Xu Y, Dong Q, et al. Arthroscopic posterior cruciate ligament reconstruction using LARS artificial ligament: a retrospective study. J Surg Res, 2012, 173(1): 75-82. |
39. | Saragaglia D, Francony F, Gaillot J, et al. Posterior cruciate ligament reconstruction for chronic lesions: clinical experience with hamstring versus ligament advanced reinforcement system as graft. Int Orthop, 2020, 44(1): 179-185. |
40. | Luo Y, Wang ZG, Li ZJ, et al. Arthroscopic reconstruction of the posterior cruciate ligament with a ligament-advanced reinforcement system and hamstring tendon autograft: A retrospective study. Curr Med Sci, 2021, 41(5): 930-935. |
41. | Migliorini F, Pintore A, Vecchio G, et al. Ligament Advanced Reinforcement System (LARS) synthetic graft for PCL reconstruction: systematic review and meta-analysis. Br Med Bull, 2022, 143(1): 57-68. |
42. | Chiang LY, Lee CH, Tong KM, et al. Posterior cruciate ligament reconstruction implemented by the Ligament Advanced Reinforcement System over a minimum follow-up of 10 years. Knee, 2020, 27(1): 165-172. |
43. | Wang CL, Hsiao CK, Hsu AT, et al. Biocompatibility and mechanical property of lars artificial ligament with tissue ingrowth. J Mech Med Biol, 2012, 12(1): 1250012. doi: 10.1142/S0219519411004514. |
44. | Blakeney WG, Hayes A, Kop A, et al. Biomechanical and histological study of retrieved LARS synthetic ligaments. Am J Sports Med, 2024, 52(8): 1979-1983. |
45. | Winkler PW, Zsidai B, Wagala NN, et al. Evolving evidence in the treatment of primary and recurrent posterior cruciate ligament injuries, part 1: anatomy, biomechanics and diagnostics. Knee Surg Sports Traumatol Arthrosc, 2021, 29(3): 672-681. |
46. | Dasari SP, Warrier AA, Condon JJ, et al. A comprehensive meta-analysis of clinical and biomechanical outcomes comparing double-bundle and single-bundle posterior cruciate ligament reconstruction techniques. Am J Sports Med, 2023, 51(13): 3567-3582. |
47. | LaPrade RF, Cinque ME, Dornan GJ, et al. Double-bundle posterior cruciate ligament reconstruction in 100 patients at a mean 3 years’ follow-up: Outcomes were comparable to anterior cruciate ligament reconstructions. Am J Sports Med, 2018, 46(8): 1809-1818. |
48. | Chahla J, Moatshe G, Cinque ME, et al. Single-bundle and double-bundle posterior cruciate ligament reconstructions: A systematic review and meta-analysis of 441 patients at a minimum 2 years’ follow-up. Arthroscopy, 2017, 33(11): 2066-2080. |
49. | Yoon KH, Kim EJ, Kwon YB, et al. Minimum 10-year results of single- versus double-bundle posterior cruciate ligament reconstruction: Clinical, radiologic, and survivorship outcomes. Am J Sports Med, 2019, 47(4): 822-827. |
50. | Li Y, Zhang J, Song G, et al. The mechanism of “killer turn” causing residual laxity after transtibial posterior cruciate ligament reconstruction. Asia Pac J Sports Med Arthrosc Rehabil Technol, 2016, 3: 13-18. |
51. | Margheritini F, Mauro CS, Rihn JA, et al. Biomechanical comparison of tibial inlay versus transtibial techniques for posterior cruciate ligament reconstruction: analysis of knee kinematics and graft in situ forces. Am J Sports Med, 2004, 32(3): 587-593. |
52. | Oakes DA, Markolf KL, McWilliams J, et al. Biomechanical comparison of tibial inlay and tibial tunnel techniques for reconstruction of the posterior cruciate ligament. Analysis of graft forces. J Bone Joint Surg (Am), 2002, 84(6): 938-944. |
53. | McAllister DR, Markolf KL, Oakes DA, et al. A biomechanical comparison of tibial inlay and tibial tunnel posterior cruciate ligament reconstruction techniques: graft pretension and knee laxity. Am J Sports Med, 2002, 30(3): 312-317. |
54. | Lee DY, Kim DH, Kim HJ, et al. Posterior cruciate ligament reconstruction with transtibial or tibial inlay techniques: A meta-analysis of biomechanical and clinical outcomes. Am J Sports Med, 2018, 46(11): 2789-2797. |
55. | Shin YS, Kim HJ, Lee DH. No clinically important difference in knee scores or instability between transtibial and inlay techniques for PCL reconstruction: A systematic review. Clin Orthop Relat Res, 2017, 475(4): 1239-1248. |
56. | Jia G, Tang Y, Liu Z, et al. 3D killer turn angle in transtibial posterior cruciate ligament reconstruction is determined by the graft turning angle both in the sagittal and coronal planes. Orthop Surg, 2022, 14(9): 2298-2306. |
57. | Fanelli GC. PCL transtibial tunnel reconstruction. Sports Med Arthrosc Rev, 2020, 28(1): 8-13. |
58. | Lin Y, Huang Z, Zhang K, et al. Lower tibial tunnel placement in isolated posterior cruciate ligament reconstruction: Clinical outcomes and quantitative radiological analysis of the killer turn. Orthop J Sports Med, 2020, 8(8): 2325967120923950. doi: 10.1177/2325967120923950. |
59. | Niu Y, Chen Z, Jin L, et al. A modified anatomical posterior cruciate ligament reconstruction technique using the posterior septum and posterior capsule as landmarks to position the low tibial tunnel. BMC Musculoskelet Disord, 2024, 25(1): 73. doi: 10.1186/s12891-024-07176-9. |
60. | 陈坤豪, 黄锡豪, 李棋, 等. 经胫骨低位骨隧道联合减张线改良后交叉韧带重建术的临床疗效. 中国修复重建外科杂志, 2024, 38(11): 1340-1345. |
61. | Kobayashi M, Nakagawa Y, Suzuki T, et al. A retrospective review of bone tunnel enlargement after anterior cruciate ligament reconstruction with hamstring tendons fixed with a metal round cannulated interference screw in the femur. Arthroscopy, 2006, 22(10): 1093-1099. |
62. | Tachibana Y, Tanaka Y, Kinugasa K, et al. Tunnel enlargement correlates with postoperative posterior laxity after double-bundle posterior cruciate ligament reconstruction. Orthop J Sports Med, 2021, 9(1): 2325967120977834. doi: 10.1177/2325967120977834. |
63. | Lee KH, Huang TJ, Ma HH, et al. Impact of tunnel enlargement on patient-reported outcomes following isolated posterior cruciate ligament reconstruction. J Orthop Surg Res, 2025, 20(1): 74. doi: 10.1186/s13018-024-05445-w. |
64. | Xu H, Jiang W, Du S, et al. Neglected errors in ligament reconstruction surgery may increase graft-tunnel mismatch: A biomechanical study. PLoS One, 2024, 19(9): e0309146. doi: 10.1371/journal.pone.0309146. |
65. | Yue L, DeFroda SF, Sullivan K, et al. Mechanisms of bone tunnel enlargement following anterior cruciate ligament reconstruction. JBJS Rev, 2020, 8(4): e0120. doi: 10.2106/JBJS.RVW.19.00120. |
66. | Lv X, Wang M, Zhao T, et al. All-inside versus complete tibial tunnel techniques in anterior cruciate ligament reconstruction: a systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res, 2023, 18(1): 127. doi: 10.1186/s13018-023-03613-y. |
67. | Xu J, Jia Y, Zhang B, et al. Comparison of the clinical outcomes between all-inside and standard technique in anterior cruciate ligament reconstruction with 6-strand hamstring tendon autograft. Orthop Surg, 2024, 16(5): 1034-1041. |
68. | Monaco E, Fabbri M, Redler A, et al. Anterior cruciate ligament reconstruction is associated with greater tibial tunnel widening when using a bioabsorbable screw compared to an all-inside technique with suspensory fixation. Knee Surg Sports Traumatol Arthrosc, 2019, 27(8): 2577-2584. |
69. | Shoemaker EP, Tollefson LV, Jacobson NJ, et al. Arthroscopic bone grafting of anterior cruciate ligament and posterior cruciate ligament tibial and femoral tunnels as a first-stage procedure. Arthrosc Tech, 2024, 14(2): 103201. doi: 10.1016/j.eats.2024.103201. |
70. | Jiang C, Peng H, Sun Y, et al. Comparison of a novel modified PLA/HA bioabsorbable interference screw with conventional PLGA/β-TCP screw: Effect on 1-year postoperative tibial tunnel widening in a canine ACLR model. Orthop J Sports Med, 2024, 12(10): 23259671241271710. doi: 10.1177/23259671241271710. |
71. | Doğar F, Dere KI, Bilal O, et al. Comparison of the effects of endobutton continuous loop and adjustable zip loop devices on bone tunnel enlargement and clinical results in arthroscopic anterior cruciate ligament reconstruction: A retrospective observational study. Medicine (Baltimore), 2025, 104(9): e41622. doi: 10.1097/MD.0000000000041622. |
72. | Chen X, Xue C, Li K, et al. Finite element analysis of anterior cruciate ligament reconstruction techniques: A comparison of the mechanical properties of all-inside fixation and traditional fixation. Front Bioeng Biotechnol, 2024, 12: 1438839. doi: 10.3389/fbioe.2024.1438839. |
73. | Buranapuntaruk T, Boonchaliaw N, Itthipanichpong T. Retrospective cohort study comparing postoperative joint stability between all-inside PCL reconstruction technique and conventional PCL reconstruction technique in patients with multiligament knee injury. Asia Pac J Sports Med Arthrosc Rehabil Technol, 2024, 38: 9-13. |
74. | Petrillo S, Migliorini F, Bertelle F, et al. All-inside technique for isolated posterior cruciate ligament tears: Surgical technique and outcomes. J Orthop, 2025, 67: 54-58. |
75. | Nestorovoski DL, Haratian R, Guzman A, et al. All-inside PCL reconstruction, double bundle, with internal brace augmentation. Arthrosc Tech, 2023, 12(7): e1211-e1218. |
76. | Simhal RK, Bovich M, Bahrun EA, et al. Postoperative rehabilitation of posterior cruciate ligament surgery: A systematic review. Sports Med Arthrosc Rev, 2021, 29(2): 81-87. |
77. | Fan Z, Yan J, Zhou Z, et al. Delayed versus accelerated weight-bearing rehabilitation protocol following anterior cruciate ligament reconstruction: A systematic review and meta-analysis. J Rehabil Med, 2022, 54: jrm00260. doi: 10.2340/jrm.v53.1438. |
78. | Wu SY, Kim W, Kremen TJ. In vitro cellular strain models of tendon biology and tenogenic differentiation. Front Bioeng Biotechnol, 2022, 10: 826748. doi: 10.3389/fbioe.2022.826748. |
79. | Mook WR, Civitarese D, Turnbull TL, et al. Double-bundle posterior cruciate ligament reconstruction: a biomechanical analysis of simulated early motion and partial and full weightbearing on common reconstruction grafts. Knee Surg Sports Traumatol Arthrosc, 2017, 25(8): 2536-2544. |
80. | Kim JG, Lee YS, Yang BS, et al. Rehabilitation after posterior cruciate ligament reconstruction: a review of the literature and theoretical support. Arch Orthop Trauma Surg, 2013, 133(12): 1687-1695. |
81. | Senese M, Greenberg E, Todd Lawrence J, et al. Rehabilitation following isolated posterior cruciate ligament reconstruction: a literature review of published protocols. Intl J Sports Phys Ther, 2018, 13(4): 737-751. |
82. | Paroneto AC, Gomes PS, Carrijo PV, et al. Outcomes after posterior cruciate ligament reconstruction with suture tape augmentation and an accelerated rehabilitation protocol: A retrospective cohort study. Orthop J Sports Med, 2025, 13(2): 23259671241308590. doi: 10.1177/23259671241308590. |
83. | Merle du Bourg V, Orfeuvre B, Gaulin B, et al. Functional and MRI results after a 7.5 year follow-up of 35 single-stage ACL and PCL reconstructions using gracilis and semitendinosus tendon grafts and LARS artificial ligaments. Eur J Orthop Surg Traumatol, 2024, 34(2): 1163-1172. |
84. | Memmel C, Koch M, Szymski D, et al. Standardized rehabilitation or individual approach?-A retrospective analysis of early rehabilitation protocols after isolated posterior cruciate ligament reconstruction. J Pers Med, 2022, 12(8): 1299. doi: 10.3390/jpm12081299. |
- 1. Logterman SL, Wydra FB, Frank RM. Posterior cruciate ligament: Anatomy and biomechanics. Curr Rev Musculoskelet Med, 2018, 11(3): 510-514.
- 2. Bingol I, Oktem U, Kaymakoglu M, et al. PCL injury following high energy trauma: associated injuries and postoperative complications “insights from a national registry study”. J Orthop Surg Res, 2024, 19(1): 490. doi: 10.1186/s13018-024-04927-1.
- 3. Brown JS, Mogianos K, Roemer FW, et al. Clinical, patient-reported, radiographic and magnetic resonance imaging findings 11 years after acute posterior cruciate ligament injury treated non-surgically. BMC Musculoskelet Disord, 2023, 24(1): 365. doi: 10.1186/s12891-023-06480-0.
- 4. Sanders TL, Pareek A, Barrett IJ, et al. Incidence and long-term follow-up of isolated posterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc, 2017, 25(10): 3017-3023.
- 5. Schroven W, Vles G, Verhaegen J, et al. Operative management of isolated posterior cruciate ligament injuries improves stability and reduces the incidence of secondary osteoarthritis: a systematic review. Knee Surg Sports Traumatol Arthrosc, 2022, 30(5): 1733-1743.
- 6. Wind WM Jr, Bergfeld JA, Parker RD. Evaluation and treatment of posterior cruciate ligament injuries: revisited. Am J Sports Med, 2004, 32(7): 1765-1775.
- 7. Ahn S, Lee YS, Song YD, et al. Does surgical reconstruction produce better stability than conservative treatment in the isolated PCL injuries? Arch Orthop Trauma Surg, 2016, 136(6): 811-819.
- 8. Gwinner C, Jung TM, Schatka I, et al. Posterior laxity increases over time after PCL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2019, 27(2): 389-396.
- 9. Loeb AE, Ithurburn MP, Kidwell-Chandler A, et al. Technique and outcomes of posterior cruciate ligament repair with augmentation. Orthop J Sports Med, 2024, 12(1): 23259671231213988. doi: 10.1177/23259671231213988.
- 10. Oehme S, Moewis P, Boeth H, et al. PCL insufficient patients with increased translational and rotational passive knee joint laxity have no increased range of anterior-posterior and rotational tibiofemoral motion during level walking. Sci Rep, 2022, 12(1): 13232. doi: 10.1038/s41598-022-17328-3.
- 11. Krott NL, Wengle L, Whelan D, et al. Single and double bundle posterior cruciate ligament reconstruction yield comparable clinical and functional outcomes: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc, 2022, 30(7): 2388-2399.
- 12. Ochiai S, Hagino T, Senga S, et al. Treatment Outcome of Reconstruction for isolated posterior cruciate injury: Subjective and objective evaluations. J Knee Surg, 2019, 32(6): 506-512.
- 13. Kim YM, Lee CA, Matava MJ. Clinical results of arthroscopic single-bundle transtibial posterior cruciate ligament reconstruction: a systematic review. Am J Sports Med, 2011, 39(2): 425-434.
- 14. Marom N, Ruzbarsky JJ, Boyle C, et al. Complications in posterior cruciate ligament injuries and related surgery. Sports Med Arthrosc Rev, 2020, 28(1): 30-33.
- 15. Morita Y, Tajima T, Yamaguchi N, et al. Risk factors of failure results after double-bundle reconstruction with autogenous hamstring grafts for isolated posterior cruciate ligament rupture cases. Sci Rep, 2024, 14(1): 6192. doi: 10.1038/s41598-024-56953-y.
- 16. 赵正吕, 李彦林, 王旭, 等. 后交叉韧带重建移植物的特点与选择. 中国组织工程研究, 2022, 26(10): 1615-1619.
- 17. Cugat R, Alentorn-Geli E, Cuscó X, et al. Articulated bone block for posterior cruciate ligament reconstruction using bone-patellar tendon-bone autograft: Surgical technique to facilitate graft passage. Arthrosc Tech, 2018, 7(2): e131-e137.
- 18. Hiraga Y, Ishibashi Y, Tsuda E, et al. Biomechanical comparison of posterior cruciate ligament reconstruction techniques using cyclic loading tests. Knee Surg Sports Traumatol Arthrosc, 2006, 14(1): 13-19.
- 19. Sollberger VD, Korthaus A, Barg A, et al. Long-term results after anterior cruciate ligament reconstruction using patellar tendon versus hamstring tendon autograft with a minimum follow-up of 10 years-a systematic review. Arch Orthop Trauma Surg, 2023, 143(7): 4277-4289.
- 20. Johnson P, Mitchell SM, Görtz S. Graft considerations in posterior cruciate ligament reconstruction. Curr Rev Musculoskelet Med, 2018, 11(3): 521-527.
- 21. Dai W, Leng X, Wang J, et al. Quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring tendon autografts for anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Am J Sports Med, 2022, 50(12): 3425-3439.
- 22. Migliorini F, Pintore A, Oliva F, et al. Allografts as alternative to autografts in primary posterior cruciate ligament reconstruction: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc, 2023, 31(7): 2852-2860.
- 23. Belk JW, Kraeutler MJ, Purcell JM, et al. Autograft versus allograft for posterior cruciate ligament reconstruction: An updated systematic review and meta-analysis. Am J Sports Med, 2018, 46(7): 1752-1757.
- 24. Balsly CR, Cotter AT, Williams LA, et al. Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts. Cell Tissue Bank, 2008, 9(4): 289-298.
- 25. Bourgeault-Gagnon Y, Leang AK, Bédard S, et al. Estimated diameter increase from a 4S to a 6S hamstring graft configuration-A cadaveric study. SICOT J, 2023, 9: 34. doi: 10.1051/sicotj/2023033.
- 26. Li J, Wang J, Li Y, et al. A prospective randomized study of anterior cruciate ligament reconstruction with autograft, γ-irradiated allograft, and hybrid graft. Arthroscopy, 2015, 31(7): 1296-1302.
- 27. Li J, Kong F, Gao X, et al. Prospective randomized comparison of knee stability and proprioception for posterior cruciate ligament reconstruction with autograft, hybrid graft, and γ-irradiated allograft. Arthroscopy, 2016, 32(12): 2548-2555.
- 28. Trasolini NA, Rick Hatch GF. Suture augmentation: An alternative to reconstruction for incomplete posterior cruciate ligament injuries in the multiple ligament-injured knee. Arthrosc Tech, 2018, 7(3): e239-e243.
- 29. Trasolini NA, Hatch GF, Wright D, et al. Posterior cruciate ligament reconstruction with internal brace augmentation reduces posterior tibial translation under cyclic loading. Orthopedics, 2021, 44(4): 235-240.
- 30. Levy BA, Piepenbrink M, Stuart MJ, et al. Posterior cruciate ligament reconstruction with independent suture tape reinforcement: An in vitro biomechanical full construct study. Orthop J Sports Med, 2021, 9(2): 2325967120981875. doi: 10.1177/2325967120981875.
- 31. Zhang H, Wang J, Gao Y, et al. Suture tape augmentation improves posterior stability after isolated posterior cruciate ligament reconstruction using hamstring tendon autograft with single-bundle transtibial technique. Arthroscopy, 2024, 40(7): 2045-2054.
- 32. Zhao X, Duan MY, Chen SQ, et al. Posterior cruciate ligament reconstruction with independent internal brace reinforcement: surgical technique and clinical outcomes with a minimum two year follow-up. Int Orthop, 2022, 46(9): 2019-2028.
- 33. 熊波涵, 卢晓君, 薛文强, 等. 内减张技术辅助前交叉韧带重建对滇南小耳猪关节软骨的保护作用. 中国组织工程研究, 2024, 28(14): 2221-2226.
- 34. 熊波涵, 王国梁, 余洋, 等. 内减张技术辅助前交叉韧带重建促进滇南小耳猪跟腱移植物韧带化. 中国组织工程研究, 2025, 29(4): 713-720.
- 35. Xiong B, Yu Y, Xie B, et al. Clinical efficacy and kinematic analysis of Chinese knotting technique-assisted posterior cruciate ligament reconstruction: A retrospective analysis. Medicine (Baltimore), 2024, 103(17): e37840. doi: 10.1097/MD.0000000000037840.
- 36. Joshi A, Sable A, Usman S, et al. Chronic reactive synovitis in patients undergoing ACL reconstruction and augmentation with tape-type sutures. J Clin Orthop Trauma, 2024, 61: 102884. doi: 10.1016/j.jcot.2024.102884.
- 37. Lessim S, Migonney V, Thoreux P, et al. PolyNaSS bioactivation of LARS artificial ligament promotes human ligament fibroblast colonisation in vitro. Biomed Mater Eng, 2013, 23(4): 289-297.
- 38. Shen G, Xu Y, Dong Q, et al. Arthroscopic posterior cruciate ligament reconstruction using LARS artificial ligament: a retrospective study. J Surg Res, 2012, 173(1): 75-82.
- 39. Saragaglia D, Francony F, Gaillot J, et al. Posterior cruciate ligament reconstruction for chronic lesions: clinical experience with hamstring versus ligament advanced reinforcement system as graft. Int Orthop, 2020, 44(1): 179-185.
- 40. Luo Y, Wang ZG, Li ZJ, et al. Arthroscopic reconstruction of the posterior cruciate ligament with a ligament-advanced reinforcement system and hamstring tendon autograft: A retrospective study. Curr Med Sci, 2021, 41(5): 930-935.
- 41. Migliorini F, Pintore A, Vecchio G, et al. Ligament Advanced Reinforcement System (LARS) synthetic graft for PCL reconstruction: systematic review and meta-analysis. Br Med Bull, 2022, 143(1): 57-68.
- 42. Chiang LY, Lee CH, Tong KM, et al. Posterior cruciate ligament reconstruction implemented by the Ligament Advanced Reinforcement System over a minimum follow-up of 10 years. Knee, 2020, 27(1): 165-172.
- 43. Wang CL, Hsiao CK, Hsu AT, et al. Biocompatibility and mechanical property of lars artificial ligament with tissue ingrowth. J Mech Med Biol, 2012, 12(1): 1250012. doi: 10.1142/S0219519411004514.
- 44. Blakeney WG, Hayes A, Kop A, et al. Biomechanical and histological study of retrieved LARS synthetic ligaments. Am J Sports Med, 2024, 52(8): 1979-1983.
- 45. Winkler PW, Zsidai B, Wagala NN, et al. Evolving evidence in the treatment of primary and recurrent posterior cruciate ligament injuries, part 1: anatomy, biomechanics and diagnostics. Knee Surg Sports Traumatol Arthrosc, 2021, 29(3): 672-681.
- 46. Dasari SP, Warrier AA, Condon JJ, et al. A comprehensive meta-analysis of clinical and biomechanical outcomes comparing double-bundle and single-bundle posterior cruciate ligament reconstruction techniques. Am J Sports Med, 2023, 51(13): 3567-3582.
- 47. LaPrade RF, Cinque ME, Dornan GJ, et al. Double-bundle posterior cruciate ligament reconstruction in 100 patients at a mean 3 years’ follow-up: Outcomes were comparable to anterior cruciate ligament reconstructions. Am J Sports Med, 2018, 46(8): 1809-1818.
- 48. Chahla J, Moatshe G, Cinque ME, et al. Single-bundle and double-bundle posterior cruciate ligament reconstructions: A systematic review and meta-analysis of 441 patients at a minimum 2 years’ follow-up. Arthroscopy, 2017, 33(11): 2066-2080.
- 49. Yoon KH, Kim EJ, Kwon YB, et al. Minimum 10-year results of single- versus double-bundle posterior cruciate ligament reconstruction: Clinical, radiologic, and survivorship outcomes. Am J Sports Med, 2019, 47(4): 822-827.
- 50. Li Y, Zhang J, Song G, et al. The mechanism of “killer turn” causing residual laxity after transtibial posterior cruciate ligament reconstruction. Asia Pac J Sports Med Arthrosc Rehabil Technol, 2016, 3: 13-18.
- 51. Margheritini F, Mauro CS, Rihn JA, et al. Biomechanical comparison of tibial inlay versus transtibial techniques for posterior cruciate ligament reconstruction: analysis of knee kinematics and graft in situ forces. Am J Sports Med, 2004, 32(3): 587-593.
- 52. Oakes DA, Markolf KL, McWilliams J, et al. Biomechanical comparison of tibial inlay and tibial tunnel techniques for reconstruction of the posterior cruciate ligament. Analysis of graft forces. J Bone Joint Surg (Am), 2002, 84(6): 938-944.
- 53. McAllister DR, Markolf KL, Oakes DA, et al. A biomechanical comparison of tibial inlay and tibial tunnel posterior cruciate ligament reconstruction techniques: graft pretension and knee laxity. Am J Sports Med, 2002, 30(3): 312-317.
- 54. Lee DY, Kim DH, Kim HJ, et al. Posterior cruciate ligament reconstruction with transtibial or tibial inlay techniques: A meta-analysis of biomechanical and clinical outcomes. Am J Sports Med, 2018, 46(11): 2789-2797.
- 55. Shin YS, Kim HJ, Lee DH. No clinically important difference in knee scores or instability between transtibial and inlay techniques for PCL reconstruction: A systematic review. Clin Orthop Relat Res, 2017, 475(4): 1239-1248.
- 56. Jia G, Tang Y, Liu Z, et al. 3D killer turn angle in transtibial posterior cruciate ligament reconstruction is determined by the graft turning angle both in the sagittal and coronal planes. Orthop Surg, 2022, 14(9): 2298-2306.
- 57. Fanelli GC. PCL transtibial tunnel reconstruction. Sports Med Arthrosc Rev, 2020, 28(1): 8-13.
- 58. Lin Y, Huang Z, Zhang K, et al. Lower tibial tunnel placement in isolated posterior cruciate ligament reconstruction: Clinical outcomes and quantitative radiological analysis of the killer turn. Orthop J Sports Med, 2020, 8(8): 2325967120923950. doi: 10.1177/2325967120923950.
- 59. Niu Y, Chen Z, Jin L, et al. A modified anatomical posterior cruciate ligament reconstruction technique using the posterior septum and posterior capsule as landmarks to position the low tibial tunnel. BMC Musculoskelet Disord, 2024, 25(1): 73. doi: 10.1186/s12891-024-07176-9.
- 60. 陈坤豪, 黄锡豪, 李棋, 等. 经胫骨低位骨隧道联合减张线改良后交叉韧带重建术的临床疗效. 中国修复重建外科杂志, 2024, 38(11): 1340-1345.
- 61. Kobayashi M, Nakagawa Y, Suzuki T, et al. A retrospective review of bone tunnel enlargement after anterior cruciate ligament reconstruction with hamstring tendons fixed with a metal round cannulated interference screw in the femur. Arthroscopy, 2006, 22(10): 1093-1099.
- 62. Tachibana Y, Tanaka Y, Kinugasa K, et al. Tunnel enlargement correlates with postoperative posterior laxity after double-bundle posterior cruciate ligament reconstruction. Orthop J Sports Med, 2021, 9(1): 2325967120977834. doi: 10.1177/2325967120977834.
- 63. Lee KH, Huang TJ, Ma HH, et al. Impact of tunnel enlargement on patient-reported outcomes following isolated posterior cruciate ligament reconstruction. J Orthop Surg Res, 2025, 20(1): 74. doi: 10.1186/s13018-024-05445-w.
- 64. Xu H, Jiang W, Du S, et al. Neglected errors in ligament reconstruction surgery may increase graft-tunnel mismatch: A biomechanical study. PLoS One, 2024, 19(9): e0309146. doi: 10.1371/journal.pone.0309146.
- 65. Yue L, DeFroda SF, Sullivan K, et al. Mechanisms of bone tunnel enlargement following anterior cruciate ligament reconstruction. JBJS Rev, 2020, 8(4): e0120. doi: 10.2106/JBJS.RVW.19.00120.
- 66. Lv X, Wang M, Zhao T, et al. All-inside versus complete tibial tunnel techniques in anterior cruciate ligament reconstruction: a systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res, 2023, 18(1): 127. doi: 10.1186/s13018-023-03613-y.
- 67. Xu J, Jia Y, Zhang B, et al. Comparison of the clinical outcomes between all-inside and standard technique in anterior cruciate ligament reconstruction with 6-strand hamstring tendon autograft. Orthop Surg, 2024, 16(5): 1034-1041.
- 68. Monaco E, Fabbri M, Redler A, et al. Anterior cruciate ligament reconstruction is associated with greater tibial tunnel widening when using a bioabsorbable screw compared to an all-inside technique with suspensory fixation. Knee Surg Sports Traumatol Arthrosc, 2019, 27(8): 2577-2584.
- 69. Shoemaker EP, Tollefson LV, Jacobson NJ, et al. Arthroscopic bone grafting of anterior cruciate ligament and posterior cruciate ligament tibial and femoral tunnels as a first-stage procedure. Arthrosc Tech, 2024, 14(2): 103201. doi: 10.1016/j.eats.2024.103201.
- 70. Jiang C, Peng H, Sun Y, et al. Comparison of a novel modified PLA/HA bioabsorbable interference screw with conventional PLGA/β-TCP screw: Effect on 1-year postoperative tibial tunnel widening in a canine ACLR model. Orthop J Sports Med, 2024, 12(10): 23259671241271710. doi: 10.1177/23259671241271710.
- 71. Doğar F, Dere KI, Bilal O, et al. Comparison of the effects of endobutton continuous loop and adjustable zip loop devices on bone tunnel enlargement and clinical results in arthroscopic anterior cruciate ligament reconstruction: A retrospective observational study. Medicine (Baltimore), 2025, 104(9): e41622. doi: 10.1097/MD.0000000000041622.
- 72. Chen X, Xue C, Li K, et al. Finite element analysis of anterior cruciate ligament reconstruction techniques: A comparison of the mechanical properties of all-inside fixation and traditional fixation. Front Bioeng Biotechnol, 2024, 12: 1438839. doi: 10.3389/fbioe.2024.1438839.
- 73. Buranapuntaruk T, Boonchaliaw N, Itthipanichpong T. Retrospective cohort study comparing postoperative joint stability between all-inside PCL reconstruction technique and conventional PCL reconstruction technique in patients with multiligament knee injury. Asia Pac J Sports Med Arthrosc Rehabil Technol, 2024, 38: 9-13.
- 74. Petrillo S, Migliorini F, Bertelle F, et al. All-inside technique for isolated posterior cruciate ligament tears: Surgical technique and outcomes. J Orthop, 2025, 67: 54-58.
- 75. Nestorovoski DL, Haratian R, Guzman A, et al. All-inside PCL reconstruction, double bundle, with internal brace augmentation. Arthrosc Tech, 2023, 12(7): e1211-e1218.
- 76. Simhal RK, Bovich M, Bahrun EA, et al. Postoperative rehabilitation of posterior cruciate ligament surgery: A systematic review. Sports Med Arthrosc Rev, 2021, 29(2): 81-87.
- 77. Fan Z, Yan J, Zhou Z, et al. Delayed versus accelerated weight-bearing rehabilitation protocol following anterior cruciate ligament reconstruction: A systematic review and meta-analysis. J Rehabil Med, 2022, 54: jrm00260. doi: 10.2340/jrm.v53.1438.
- 78. Wu SY, Kim W, Kremen TJ. In vitro cellular strain models of tendon biology and tenogenic differentiation. Front Bioeng Biotechnol, 2022, 10: 826748. doi: 10.3389/fbioe.2022.826748.
- 79. Mook WR, Civitarese D, Turnbull TL, et al. Double-bundle posterior cruciate ligament reconstruction: a biomechanical analysis of simulated early motion and partial and full weightbearing on common reconstruction grafts. Knee Surg Sports Traumatol Arthrosc, 2017, 25(8): 2536-2544.
- 80. Kim JG, Lee YS, Yang BS, et al. Rehabilitation after posterior cruciate ligament reconstruction: a review of the literature and theoretical support. Arch Orthop Trauma Surg, 2013, 133(12): 1687-1695.
- 81. Senese M, Greenberg E, Todd Lawrence J, et al. Rehabilitation following isolated posterior cruciate ligament reconstruction: a literature review of published protocols. Intl J Sports Phys Ther, 2018, 13(4): 737-751.
- 82. Paroneto AC, Gomes PS, Carrijo PV, et al. Outcomes after posterior cruciate ligament reconstruction with suture tape augmentation and an accelerated rehabilitation protocol: A retrospective cohort study. Orthop J Sports Med, 2025, 13(2): 23259671241308590. doi: 10.1177/23259671241308590.
- 83. Merle du Bourg V, Orfeuvre B, Gaulin B, et al. Functional and MRI results after a 7.5 year follow-up of 35 single-stage ACL and PCL reconstructions using gracilis and semitendinosus tendon grafts and LARS artificial ligaments. Eur J Orthop Surg Traumatol, 2024, 34(2): 1163-1172.
- 84. Memmel C, Koch M, Szymski D, et al. Standardized rehabilitation or individual approach?-A retrospective analysis of early rehabilitation protocols after isolated posterior cruciate ligament reconstruction. J Pers Med, 2022, 12(8): 1299. doi: 10.3390/jpm12081299.