| 1. |
Zhao H, Yu F, Wu W. New perspectives on postmenopausal osteoporosis: Mechanisms and potential therapeutic strategies of sirtuins and oxidative stress. Antioxidants (Basel), 2025, 14(5): 605. doi: 10.3390/antiox14050605.
|
| 2. |
Shuid AN, Abdul Nasir NA, Ab Azis N, et al. A systematic review on the molecular mechanisms of resveratrol in protecting against osteoporosis. Int J Mol Sci, 2025, 26(7): 2893. doi: 10.3390/ijms26072893.
|
| 3. |
Iantomasi T, Romagnoli C, Palmini G, et al. Oxidative stress and inflammation in osteoporosis: Molecular mechanisms involved and the relationship with microRNAs. Int J Mol Sci, 2023, 24(4): 3772. doi: 10.3390/ijms24043772.
|
| 4. |
Vulf M, Khlusov I, Yurova K, et al. MicroRNA regulation of bone marrow mesenchymal stem cells in the development of osteoporosis in obesity. Front Biosci (Schol Ed), 2022, 14(3): 17. doi: 10.31083/j.fbs1403017.
|
| 5. |
Qin Y, Song D, Liao S, et al. Isosinensetin alleviates estrogen deficiency-induced osteoporosis via suppressing ROS-mediated NF-κB/MAPK signaling pathways. Biomed Pharmacother, 2023, 160: 114347. doi: 10.1016/j.biopha.2023.114347.
|
| 6. |
Ilyas S, Lee J, Lee D. Emerging roles of natural compounds in osteoporosis: Regulation, molecular mechanisms and bone regeneration. Pharmaceuticals (Basel), 2024, 17(8): 984. doi: 10.3390/ph17080984.
|
| 7. |
Jäger R, Heileson JL, Abou Sawan S, et al. International society of sports nutrition position stand: Long-chain omega-3 polyunsaturated fatty acids. J Int Soc Sports Nutr, 2025, 22(1): 2441775. doi: 10.1080/15502783.2024.2441775.
|
| 8. |
Benova A, Ferencakova M, Bardova K, et al. Omega-3 PUFAs prevent bone impairment and bone marrow adiposity in mouse model of obesity. Commun Biol, 2023, 6(1): 1043. doi: 10.1038/s42003-023-05407-8.
|
| 9. |
Yoon J, Kim D, Jeong NH, et al. Protectin D1, an omega-3-derived lipid mediator, resolves mast cell-driven allergic inflammation via FcεRⅠ signaling. Biomed Pharmacother, 2025, 187: 118060. doi: 10.1016/j.biopha.2025.118060.
|
| 10. |
Peng X, Feng J, Yang H, et al. Nrf2: A key regulator in chemoradiotherapy resistance of osteosarcoma. Genes Dis, 2024, 12(4): 101335. doi: 10.1016/j.gendis.2024.101335.
|
| 11. |
Yang X, Liu Y, Cao J, et al. Targeting epigenetic and post-translational modifications of NRF2: key regulatory factors in disease treatment. Cell Death Discov, 2025, 11(1): 189. doi: 10.1038/s41420-025-02491-z.
|
| 12. |
Morgenstern C, Lastres-Becker I, Demirdöğen BC, et al. Biomarkers of NRF2 signalling: Current status and future challenges. Redox Biol, 2024, 72: 103134. doi: 10.1016/j.redox.2024.103134.
|
| 13. |
Schiavoni V, Emanuelli M, Milanese G, et al. Nrf2 signaling in renal cell carcinoma: A potential candidate for the development of novel therapeutic strategies. Int J Mol Sci, 2024, 25(24): 13239. doi: 10.3390/ijms252413239.
|
| 14. |
Petrikonis K, Bernatoniene J, Kopustinskiene DM, et al. The antinociceptive role of Nrf2 in neuropathic pain: From mechanisms to clinical perspectives. Pharmaceutics, 2024, 16(8): 1068. doi: 10.3390/pharmaceutics16081068.
|
| 15. |
Stojanovic NM, Mitić M, Ilić J, et al. Natural source of drugs targeting central nervous system tumors-focus on NAD(P)H oxidoreductase 1 (NQO1) activity. Brain Sci, 2025, 15(2): 132. doi: 10.3390/brainsci15020132.
|
| 16. |
Wadowski P, Juszczak M, Woźniak K. NRF2 modulators of plant origin and their ability to overcome multidrug resistance in cancers. Int J Mol Sci, 2024, 25(21): 11500. doi: 10.3390/ijms252111500.
|
| 17. |
Chen DT, Wan ZJ, Sheng XP, et al. Effects of higenamine on M1/M2 polarization and osteoclast differentiation in rheumatoid arthritis via the THBS-1/TGF-β signaling pathway. Cell Signal, 2025, 134: 111905. doi: 10.1016/j.cellsig.2025.111905.
|
| 18. |
Danielsson BR, Ritchie HE. Review: hormone pregnancy tests were teratogenic by the same failed abortion and hypoxia-related mechanism as misoprostol. Birth Defects Res, 2025, 117(3): e2462. doi: 10.1002/bdr2.2462.
|
| 19. |
Soulage CO, Sardón Puig L, Soulère L, et al. Skeletal muscle insulin resistance is induced by 4-hydroxy-2-hexenal, a by-product of n-3 fatty acid peroxidation. Diabetologia, 2018, 61(3): 688-699.
|
| 20. |
Zhang C, Li H, Li J, et al. Oxidative stress: A common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother, 2023, 163: 114834. doi: 10.1016/j.biopha.2023.114834.
|
| 21. |
Mo X, Meng K, Li Z, et al. An integrated microcurrent delivery system facilitates human parathyroid hormone delivery for enhancing osteoanabolic effect. Small Methods, 2025, 9(3): e2401144. doi: 10.1002/smtd.202401144.
|
| 22. |
Kanbay M, Ozbek L, Guldan M, et al. Nutrition, cognition and chronic kidney disease: A comprehensive review of interactions and interventions. Eur J Clin Invest, 2025, 55(6): e70045. doi: 10.1111/eci.70045.
|
| 23. |
Noreen S, Hashmi B, Aja PM, et al. Health benefits of fish and fish by-products-a nutritional and functional perspective. Front Nutr, 2025, 12: 1564315. doi: 10.3389/fnut.2025.1564315.
|
| 24. |
Kupczyk D, Bilski R, Szeleszczuk Ł, et al. The role of diet in modulating inflammation and oxidative stress in rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis. Nutrients, 2025, 17(9): 1603. doi: 10.3390/nu17091603.
|
| 25. |
Wang H, Li Y, Zhang L, et al. Anti-inflammatory lipid mediators from polyunsaturated fatty acids: Insights into their role in atherosclerosis microenvironments. Curr Atheroscler Rep, 2025, 27(1): 48. doi: 10.1007/s11883-025-01285-z.
|