1. |
张英泽. 临床创伤骨科流行病学. 北京: 人民卫生出版社, 2014: 290-291.
|
2. |
刘家伦, 张英泽, 郑占乐. 胫骨平台骨折内固定生物力学研究进展. 中国修复重建外科杂志, 2024, 38(1): 113-118.
|
3. |
Parkkinen M, Madanat R, Mustonen A, et al. Factors predicting the development of early osteoarthritis following lateral tibial plateau fractures: mid-term clinical and radiographic outcomes of 73 operatively treated patients. Scand J Surg, 2014, 103(4): 256-262.
|
4. |
王博, 王娟, 郑占乐, 等. 自断加压骨栓联合接骨板治疗胫骨平台骨折的疗效. 中华创伤骨科杂志, 2021, 23(2): 111-115.
|
5. |
Miles DT, Colón LF, Wilson AW, et al. Topical antibiotic powder and nonunion risk in surgically treated tibial plateau and pilon fractures. J Am Acad Orthop Surg, 2023, 31(6): e310-e317.
|
6. |
Wang Y, Wang Z, Dong Y, et al. Outcomes after ORIF are similar in young and elderly patients with tibial plateau fractures: A minimum 2-year follow-up study. J Orthop Sci, 2024, 29(1): 292-298.
|
7. |
Wang Y, Luo C, Zhu Y, et al. Updated three-column concept in surgical treatment for tibial plateau fractures—A prospective cohort study of 287 patients. Injury, 2016, 47(7): 1488-1496.
|
8. |
Wang Z, Zheng Z, Ye P, et al. Treatment of tibial plateau fractures: A comparison of two different operation strategies with medium-term follow up. J Orthop Translat, 2022, 36: 1-7.
|
9. |
张英泽. 顺势复位固定微创治疗胫骨平台骨折. 中华骨科杂志, 2023, 43(22): 1473-1476.
|
10. |
朱燕宾, 陈伟, 张奇, 等. 胫骨平台核心负重区的概念及其临床意义. 中华骨科杂志, 2021, 41(3): 137-140.
|
11. |
Wang Z, Zheng Z, Wang Y, et al. Unilateral locking plate versus unilateral locking plate combined with compression bolt for SchatzkerⅠ-Ⅳ tibial plateau fractures: a comparative study. Int Orthop, 2022, 46(5): 1133-1143.
|
12. |
Ollivier M, Turati M, Munier M, et al. Balloon tibioplasty for reduction of depressed tibial plateau fractures: Preliminary radiographic and clinical results. Int Orthop, 2016, 40(9): 1961-1966.
|
13. |
孔祥如, 王冰, 杨春, 等. 外侧排筏钢板结合Jail螺钉固定治疗累及后外侧柱的胫骨平台塌陷骨折近期疗效. 中国修复重建外科杂志, 2023, 37(1): 12-18.
|
14. |
王照东, 段克友, 刘亚军, 等. 中转螺钉辅助复位固定技术在Schatzker Ⅴ、Ⅵ型胫骨平台骨折治疗中的应用. 中国修复重建外科杂志, 2025, 39(5): 529-535.
|
15. |
裴璇, 汪国栋, 钱胜龙, 等. 经外侧平台非核心负重区截骨复位内固定治疗伴后外侧柱塌陷的胫骨平台骨折. 中国修复重建外科杂志, 2023, 37(4): 410-416.
|
16. |
肖飞, 何文平, 王俊文, 等. 骨科手术机器人辅助下微创治疗可间接复位的Schatzker Ⅱ、Ⅲ型胫骨平台骨折的疗效分析. 中华创伤骨科杂志, 2024, 26(7): 604-610.
|
17. |
Ueda H, Suzuki R, Nakazawa A, et al. Toward autonomous collision avoidance for robotic neurosurgery in deep and narrow spaces in the brain. Procedia CIRP, 2017, 65: 110-114.
|
18. |
刘又文. 骨科微创技术的发展概况与展望. 中医正骨, 2016, 28(3): 1-4.
|
19. |
Zheng G, Nolte LP. Computer-assisted orthopedic surgery: current state and future perspective. Front Surg, 2015, 2: 66. doi: 10.3389/fsurg.2015.00066.
|
20. |
苏永刚, 孙志彬, 朱罡, 等. 基于体感交互的骨折复位机器人控制方法实验研究. 中国生物医学工程学报, 2016, 35(3): 380-384.
|
21. |
朱振中, 郑国焱, 张长青. 机器人辅助技术在创伤骨科的发展与临床应用. 中国修复重建外科杂志, 2022, 36(8): 915-922.
|
22. |
Zhu Y, Qin S, Jia Y, et al. Surgeon volume and the risk of deep surgical site infection following open reduction and internal fixation of closed tibial plateau fracture. Int Orthop, 2022, 46(3): 605-614.
|
23. |
Wang Z, Wang Y, Wang Y, et al. Introduction and an analysis of inter- and intra-observer validity to the classification of hoffa-like tibial plateau fractures. Orthop Surg, 2024, 16(1): 132-139.
|
24. |
Martz P, Le Baron M. High-energy tibial plateau fracture. Orthop Traumatol Surg Res, 2025, 111(1S): 104072. doi: 10.1016/j.otsr.2024.104072.
|
25. |
Makaram NS, Param A, Clement ND, et al. Primary versus secondary total knee arthroplasty for tibial plateau fractures in patients aged 55 or over—A systematic review and meta-analysis. J Arthroplasty, 2024, 39(2): 559-567.
|
26. |
Zhao WQ, Li XS, Hua J, et al. Reverse traction with Kirschner wires and bilateral external fixation device combined with minimally invasive plate oseoynthesis technique for tibial plateau fractures of type Schatzker Ⅴ and Ⅵ. Int Orthop, 2023, 47(9): 2327-2336.
|
27. |
Sciadini M, Sims S. Proximal tibial intra-articular osteotomy for treatment of complex Schatzker type Ⅳ tibial plateau fractures with lateral joint line impaction: description of surgical technique and report of nine cases. J Orthop Trauma, 2013, 27(1): e18-e23.
|
28. |
张英泽. 胫骨平台骨折微创治疗策略与进展. 中华创伤骨科杂志, 2017, 19(10): 829-832.
|
29. |
Wang Z, Zhu Y, Deng X, et al. Structural bicortical autologous iliac crest bone graft combined with the tunnel bone tamping method for the depressed tibial plateau fractures. Biomed Res Int, 2021, 2021: 1249734. doi: 10.1155/2021/1249734.
|
30. |
Chang JS, Kayani B, Wallace C, et al. Functional alignment achieves soft-tissue balance in total knee arthroplasty as measured with quantitative sensor-guided technology. Bone Joint J, 2021, 103-B(3): 507-514.
|
31. |
Giordano V, Belangero WD, Sá BA, et al. Plate-screw and screwwasher stability in a Schatzker type-Ⅰlateral tibial plateau fracture: a comparative biomechanical study. Rev Col Bras Cir, 2020, 47: e20202546. doi: 10.1590/0100-6991e-20202546.
|
32. |
刘家伦, 郑占乐. 胫骨平台骨折微创手术治疗进展. 河北医科大学学报, 2022, 43(9): 1113-1117.
|
33. |
Yan B, Huang X, Xu Y, et al. A novel locking Buttress plate designed for simultaneous medial and posterolateral tibial plateau fractures: concept and comparative finite element analysis. Orthop Surg, 2023, 15(4): 1104-1116.
|
34. |
Teo AQA, Ng DQK, Ramruttun AK, et al. Standard versus customised locking plates for fixation of schatzker ii tibial plateau fractures. Injury, 2022, 53(2): 676-682.
|
35. |
Kambhampati SBS, Rajagopalan S, Abraham VT, et al. Implant design and its applications in the fixation of osteoporotic bones: newer technologies in nails, plates and external fixators. Indian J Orthop, 2024, 59(3): 280-293.
|
36. |
Liu X, Miramini S, Patel M, et al. Balance between mechanical stability and mechano-biology of fracture healing under volar locking plate. Ann Biomed Eng, 2021, 49(9): 2533-2553.
|
37. |
张英泽. 骨折顺势复位治疗体系的建立. 北京: 人民卫生出版社, 2018: 574.
|
38. |
张英泽, 韩志杰, 刘欢, 等. 河北医科大学第三医院骨折治疗理念与原则. 河北医科大学学报, 2017, 38(9): 1093-1095.
|
39. |
Wang L, You X, Lotinun S, et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat Commun, 2020, 11(1): 282. doi: 10.1038/s41467-019-14146-6.
|
40. |
Li X, Han L, Nookaew I, et al. Stimulation of Piezo1 by mechanical signals promotes bone anabolism. Elife, 2019, 8: e49631-e49653.
|