1. |
Mohd Isa IL, Teoh SL, Mohd Nor NH, et al. Discogenic low back pain: Anatomy, pathophysiology and treatments of intervertebral disc degeneration. Int J Mol Sci, 2022, 24(1): 208. doi: 10.3390/ijms24010208.
|
2. |
Zhang S, Hu B, Liu W, et al. The role of structure and function changes of sensory nervous system in intervertebral disc-related low back pain. Osteoarthritis Cartilage, 2021, 29(1): 17-27.
|
3. |
Xin J, Wang Y, Zheng Z, et al. Treatment of intervertebral disc degeneration. Orthop Surg, 2022, 14(7): 1271-1280.
|
4. |
Gu Z, He Y, Xiang H, et al. Self-healing injectable multifunctional hydrogels for intervertebral disc disease. Mater Today Bio, 2025, 32: 101655. doi: 10.1016/j.mtbio.2025.101655.
|
5. |
Lillyman DJ, Reddick EC, Ney KE, et al. An extracellular matrix hydrogel restores disc volume and alleviates axial hypersensitivity in a rat model of disc-associated pain. JOR Spine, 2025, 8(2): e70073. doi: 10.1002/jsp2.70073.
|
6. |
Cai W, Yang F, Yang C, et al. Multiscale mechanical-adapted hydrogels for the repair of intervertebral disc degeneration. Bioact Mater, 2025, 48: 336-52.
|
7. |
Wang S, Zhai Y, Liu M, et al. A hydrogel-based drug delivery system reduces inflammation and oxidative stress to alleviate intervertebral disc degeneration. Acta Biomater, 2025, 203: 229-244.
|
8. |
Li J, Ren L, Wan L, et al. Quercetin nanoformulation-embedded hydrogel inhibits osteopontin mediated ferroptosis for intervertebral disc degeneration alleviation. J Nanobiotechnology, 2025, 23(1): 492. doi: 10.1186/s12951-025-03574-w.
|
9. |
Wang J, Zhang Y, Huang Y, et al. Application trends and strategies of hydrogel delivery systems in intervertebral disc degeneration: A bibliometric review. Mater Today Bio, 2024, 28: 101251. doi: 10.1016/j.mtbio.2024.101251.
|
10. |
Wu Y, Li F, Shu S, et al. Baicalin alleviates intervertebral disc degeneration by inhibiting the p38 MAPK signaling pathway. Exp Gerontol, 2025, 204: 112743. doi: 10.1016/j.exger.2025.112743.
|
11. |
Xu J, Shao T, Lou J, et al. Aging, cell senescence, the pathogenesis and targeted therapies of intervertebral disc degeneration. Front Pharmacol, 2023, 14: 1172920. doi: 10.3389/fphar.2023.1172920.
|
12. |
Tian X, Wen Y, Zhang Z, et al. Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing. Biomaterials, 2025, 318: 123134. doi: 10.1016/j.biomaterials.2025.123134.
|
13. |
Bashir S, Hina M, Iqbal J, et al. Fundamental concepts of hydrogels: Synthesis, properties, and their applications. Polymers (Basel), 2020, 12(11): 2702. doi: 10.3390/polym12112702.
|
14. |
Lee JH, Kim HW. Emerging properties of hydrogels in tissue engineering. J Tissue Eng, 2018, 9: 2041731418768285. doi: 10.1177/2041731418768285.
|
15. |
Gradinaru V, Treweek J, Overton K, et al. Hydrogel-tissue chemistry: Principles and applications. Annu Rev Biophys, 2018, 47: 355-376.
|
16. |
Mehta P, Sharma M, Devi M. Hydrogels: An overview of its classifications, properties, and applications. J Mech Behav Biomed Mater, 2023, 147: 106145. doi: 10.1016/j.jmbbm.2023.106145.
|
17. |
Chen G, Bian C, Cheng X, et al. Bio-engineered thermo-sensitive alginate/PNIA-g-CS co-polymeric injectable hydrogel laden with GDF-5 to stimulate nucleus pulposus for IVD regeneration. J Biol Eng, 2025, 19(1): 49. doi: 10.1186/s13036-025-00520-0.
|
18. |
Choi MH, Blanco A, Stealey S, et al. Micro-clotting of platelet-rich plasma upon loading in hydrogel microspheres leads to prolonged protein release and slower microsphere degradation. Polymers (Basel), 2020, 12(8): 1712. doi: 10.3390/polym12081712.
|
19. |
Ma T, Liu C, Zhao Q, et al. Decellularized nucleus pulposus matrix/chitosan hybrid hydrogel combined with nucleus pulposus stem cells and GDF5-loaded microspheres for intervertebral disc degeneration prevention. Mol Med, 2024, 30(1): 7. doi: 10.1186/s10020-024-00777-z.
|
20. |
Han F, Tu Z, Zhu Z, et al. Targeting endogenous reactive oxygen species removal and regulating regenerative microenvironment at annulus fibrosus defects promote tissue repair. ACS Nano, 2023, 17(8): 7645-7661.
|
21. |
Li M, Wu Y, Li H, et al. Nanofiber reinforced alginate hydrogel for leak-proof delivery and higher stress loading in nucleus pulposus. Carbohydr Polym, 2023, 299: 120193. doi: 10.1016/j.carbpol.2022.120193.
|
22. |
Hu A, Xing R, Jiang L, et al. Thermosensitive hydrogels loaded with human-induced pluripotent stem cells overexpressing growth differentiation factor-5 ameliorate intervertebral disc degeneration in rats. J Biomed Mater Res B Appl Biomater, 2020, 108(5): 2005-2016.
|
23. |
Ligorio C, O'Brien M, Hodson NW, et al. TGF-β3-loaded graphene oxide-self-assembling peptide hybrid hydrogels as functional 3D scaffolds for the regeneration of the nucleus pulposus. Acta Biomater, 2021, 127: 116-130.
|
24. |
Tian Z, Shen Z, Chen H, et al. Silk fibroin-collagen hydrogel loaded with IGF1-CESCs attenuates intervertebral disk degeneration by accelerating annulus fibrosus healing in rats. Front Pharmacol, 2025, 16: 1552174. doi. doi: 10.3389/fphar.2025.1552174.
|
25. |
Wei Z, Ye H, Li Y, et al. Mechanically tough, adhesive, self-healing hydrogel promotes annulus fibrosus repair via autologous cell recruitment and microenvironment regulation. Acta Biomater, 2024, 178: 50-67.
|
26. |
Wang C, Li Z, Zhang K, et al. Self-assembling peptides with hBMP7 biological activity promote the differentiation of ADSCs into nucleus pulposus-like cells. J Orthop Surg Res, 2022, 17(1): 197. doi: 10.1186/s13018-022-03102-8.
|
27. |
Zhu C, Zhou Q, Wang Z, et al. Growth differentiation factor 5 inhibits lipopolysaccharide-mediated pyroptosis of nucleus pulposus mesenchymal stem cells via RhoA signaling pathway. Mol Biol Rep, 2023, 50(8): 6337-6347.
|
28. |
Tam V, Chopra N, Sima S, et al. Effects of GDF6 on active protein synthesis by cells of degenerated intervertebral disc. Eur Spine J, 2025, 34(6): 2066-2078.
|
29. |
Chen S, Liu S, Ma K, et al. TGF-β signaling in intervertebral disc health and disease. Osteoarthritis Cartilage, 2019, 27(8): 1109-1117.
|
30. |
Zheng D, Chen W, Chen T, et al. Hydrogen ion capturing hydrogel microspheres for reversing inflammaging. Adv Mater, 2024, 36(5): e2306105. doi: 10.1002/adma.202306105.
|
31. |
Luo J, Darai A, Pongkulapa T, et al. Injectable bioorthogonal hydrogel (BIOGEL) accelerates tissue regeneration in degenerated intervertebral discs. Bioact Mater, 2022, 23: 551-562.
|
32. |
Lodyga M, Hinz B. TGF-β1—A truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol, 2020, 101: 123-139.
|
33. |
Okoro PD, Frayssinet A, De Oliveira S, et al. Combining biomimetic collagen/hyaluronan hydrogels with discogenic growth factors promotes mesenchymal stroma cell differentiation into Nucleus Pulposus like cells. Biomater Sci, 2023, 11(24): 7768-7783.
|
34. |
Zhou L, Cai F, Zhu H, et al. Immune-defensive microspheres promote regeneration of the nucleus pulposus by targeted entrapment of the inflammatory cascade during intervertebral disc degeneration. Bioact Mater, 2024, 37: 132-152.
|
35. |
Frapin L, Clouet J, Chédeville C, et al. Controlled release of biological factors for endogenous progenitor cell migration and intervertebral disc extracellular matrix remodelling. Biomaterials, 2020, 253: 120107. doi: 10.1016/j.biomaterials.2020.120107.
|
36. |
Kuang W, Liu C, Xu H. The application of decellularized nucleus pulposus matrix/chitosan with transforming growth factor β3 for nucleus pulposus tissue engineering. Cytotechnology, 2021, 73(3): 447-456.
|
37. |
Xie X, Peng Y, Liu G, et al. Application and mechanism of percutaneous puncture disc platelet-rich plasma injection for lumbar disc herniation: a systematic review and meta-analysis. J Orthop Surg Res, 2025, 20(1): 699. doi: 10.1186/s13018-025-06025-2.
|
38. |
Lu L, Xiao K, He LR, et al. Comparison of full endoscopic lumbar discectomy combined with and without platelet-rich plasma injections for lumbar disc herniation: a meta-analysis. Asian Spine J, 2025. doi: 10.31616/asj.2024.0243.
|
39. |
Wang X, Zhang Y. Therapeutic interventions of platelet-rich plasma versus corticosteroid injections for lumbar radicular pain: a systematic review and meta-analysis. J Orthop Surg Res, 2025, 20(1): 306. doi: 10.1186/s13018-025-05725-z.
|
40. |
Zhang L, Zhang C, Song D, et al. Combination of percutaneous endoscopic lumbar discectomy and platelet-rich plasma hydrogel injection for the treatment of lumbar disc herniation. J Orthop Surg Res, 2023, 18(1): 609. doi: 10.1186/s13018-023-04093-w.
|
41. |
Yahia S, Khalil IA, El-Sherbiny IM. Fortified gelatin-based hydrogel scaffold with simvastatin-mixed nanomicelles and platelet rich plasma as a promising bioimplant for tissue regeneration. Int J Biol Macromol, 2023, 225: 730-744.
|
42. |
Chai Q, Zhang B, Da Y, et al. Enhancement and repair of degenerative intervertebral disc in rats using platelet-rich plasma/ferulic acid hydrogel. Cartilage, 2023, 14(4): 506-515.
|
43. |
Growney EA, Linder HR, Garg K, et al. Bio-conjugation of platelet-rich plasma and alginate through carbodiimide chemistry for injectable hydrogel therapies. J Biomed Mater Res B Appl Biomater, 2020, 108(5): 1972-1984.
|
44. |
Lin H, Tian S, Peng Y, et al. IGF signaling in intervertebral disc health and disease. Front Cell Dev Biol, 2022, 9: 817099. doi: 10.3389/fcell.2021.817099.
|
45. |
Yu L, Wu H, Zeng S, et al. Menstrual blood-derived mesenchymal stem cells combined with collagen I gel as a regenerative therapeutic strategy for degenerated disc after discectomy in rats. Stem Cell Res Ther, 2024, 15(1): 75. doi: 10.1186/s13287-024-03680-w.
|
46. |
Zhang W, Gong Y, Zheng X, et al. Platelet-derived growth factor-BB inhibits intervertebral disc degeneration via suppressing pyroptosis and activating the MAPK signaling pathway. Front Pharmacol, 2021, 12: 799130. doi: 10.3389/fphar.2021.799130.
|
47. |
Zheng X, Qiu J, Ye J, et al. Macrophage-derived PDGF-BB modulates glycolytic enzymes expression and pyroptosis in nucleus pulposus cells via PDGFR-β/TXNIP pathway. Osteoarthritis Cartilage, 2024, 32(10): 1245-1260.
|
48. |
Fukunaga T, Pearson JJ, Miller RC, et al. PDGF-releasing hydrogels for enhanced proliferation of human nucleus pulposus cells. J Biomed Mater Res A, 2025, 113(5): e37918. doi: 10.1002/jbm.a.37918.
|
49. |
Chen Z, Lv Z, Zhuang Y, et al. Mechanical signal-tailored hydrogel microspheres recruit and train stem cells for precise differentiation. Adv Mater, 2023, 35(40): e2300180. doi: 10.1002/adma.202300180.
|
50. |
Hingert D, Barreto Henriksson H, Baranto A, et al. BMP-3 promotes matrix production in co-cultured stem cells and disc cells from low back pain patients. Tissue Eng Part A, 2020, 26(1-2): 47-56.
|
51. |
Gandhi SD, Maerz T, Mitchell S, et al. Intradiscal delivery of anabolic growth factors and a metalloproteinase inhibitor in a rabbit acute lumbar disc injury model. Int J Spine Surg, 2020, 14(4): 585-593.
|