- Department of Cardiothoracic Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000 Sichuan, P. R. China;
Congestive pulmonary arterial hypertension (PAH) is one of the most common complications of left to right shunt congenital heart disease. With the pulmonary artery pressure increasing, the shunt direction will reverse, eventually develop into Eisenmenger syndrome, and affect the patients' life. Studies in recent years have found that angiotensin -(1-7) and brain natriuretic peptide can adversely affect renin-angiotensin aldosterone system (RAAS), stromal cell derived factor can delay the pulmonary vascular remodeling, von Willebrand factor marks the pulmonary vascular endothelial function impaired, microRNA causes damage and homocysteine play a protective role in pulmonary vascular endothelial function. The RAAS activation, pulmonary vascular remodeling and endothelial dysfunction are related to the formation and development of PAH. We produced a comprehensive literature review about serological indexes in congestive PAH in this review.
Citation: TAN He-yi, LAI Ying-long. Research Progress of Serological Indexes of Congestive Pulmonary Arterial Hypertension. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2016, 23(10): 1019-1025. doi: 10.7507/1007-4848.20160241 Copy
1. | Duffels MG, Engelfriet PM, Berger RM, et al. Pulmonary arterial hypertension in congenital heart disease: an epidemiologic perspective from a Dutch registry. Int J Cardiol, 2007, 120(2): 198-204. |
2. | Diller GP, Gatzoulis MA. Pulmonary vascular disease in adults with congenital heart disease.Circulation, 2007, 115(8): 1039-1050. |
3. | 陈伟丹. microRNA与肺血增多型肺动脉高压的相关性研究. 北京协和医学院, 2011. |
4. | 张清友,杜军保. 肺动脉高压的治疗现状与进展.临床儿科杂志,2010, 28(7): 607-610. |
5. | 李敏, 陈颖敏. 血管紧张素(1-7)对心血管保护作用的研究进展. 心血管病学进展, 2013, 34(1): 100-103. |
6. | Maron BA, Leopold JA. The role of the renin-angiotensin-aldosterone system in the pathobiology of pulmonary arterial hypertension (2013 Grover Conference series). Pulm Circ, 2014, 4(2): 200-210. |
7. | 曾武涛, 马虹, 鲁伟, 等. 血管紧张素-(1-7)在血管紧张素Ⅱ诱导心肌细胞肥大中的作用. 中华心血管病杂志, 2000, 28(6): 460-463. |
8. | 何建桂, 黄艺仪, 马虹, 等. 血管紧张素-(1-7)对心肌肥厚的影响及其与细胞外信号调节激酶的关系. 中国病理生理杂志, 2005, 21(9): 1713-1716. |
9. | Dai H, Gong Y, Xiao Z, et al. Decreased levels of serum angiotension(1-7) in patients with pulmonary arterial hypertension due to congenital heart disease. Int J Cardiol, 2014, 176(3): 1399-1401. |
10. | 吴思婧, 郭雯, 陈梦娜, 等. 血管紧张素1-7预防肺动脉高压右心衰竭发展的实验研究. 心肺血管病杂志, 2015, 34(8): 652-656. |
11. | 张春玲, 康金锁, 陈曦. 等. 心血管病患者血浆N端B型脑钠肽水平变化及其临床意义. 中华检验医学杂志, 2006, 29(3): 3l-34. |
12. | Hammerer-Lercher A, Neubauer E, Muller S, et al. Head-to-head comparision of N-termiual pro-brain natriuretic peptide, brain natriuretic peptide and N-termiual pro-brain natriuretic peptide in diagnosing left ventricular dysfunction. Clin Chim Acta, 2001, 310(2): 193-197. |
13. | Nagaya N, Nishikimi T, Okano Y, et al. Plasma brain natriuretic peptide levels increase in proportion to extent of right ventricular dysfunction in pulmonary hypertensjon. J Am Coil Cardiol, 1998, 31(1): 202-208. |
14. | 张红梅, 柳茵. 肺动脉高压与脑钠肽相关性的探讨. 医学信息, 2011, 31(6):2307-2308. |
15. | Li ZF, Zhou DX, Wang QB, et al. Plasma N-terminal pro-brain natriuretic peptide levels are positively correlated with pulmonary arterial pressure in atrial septal defect patients. Regul Pept, 2013, 183C:13-16. |
16. | 高艺花, I-Seok Kang. 成人先天性心脏病伴肺动脉高压患者超声心动图右心室功能指标和血浆N端脑钠肽前体的相关性研究. 中国现代医学杂志, 2015, 25(1): 74-77. |
17. | Takatsuki S, Wagner BD, Ivy DD. B-type natriuretic peptide and amino-terminal pro-B-type natriuretic peptide in pediatric patients with pulmonary arterial hypertension. Congenit Heart Dis, 2012, 7(3): 259-267. |
18. | Pfister R, Schneider CA. Natriuretic peptides bnp and nt-pro-bnp: Established laboratory markers in clinical practice or just perspectives? Clin Chim Acta, 2004, 349(1): 25-38. |
19. | Silver MA, Maisel A, Yancy CW, et al. Bnp consensus panel 2004: A clinical approach for the diagnostic, prognostic, screening, treatment monitoring, and therapeutic roles of natriuretic peptides in cardiovascular diseases. Congest Heart Fail, 2004, 10(5 Suppl 3): 1-30. |
20. | Bernus A, Wagner BD, Accurso F, et al. Brain natriuretic peptide levels in managing pediatric patients with pulmonary arterial hypertension. Chest, 2009, 135(3):745-751. |
21. | van Loon RL, Roofthooft MT, Delhaas T, et al. Outcome of pediatric patients with pulmonary arterial hypertension in the era of new medical therapies. Am J Cardiol, 2010, 106(1): 117-124. |
22. | Lopes AA, Maeda NY, Goncalves RC, et al. Endothelial cell dysfunction correlates differentially with survival in primary and secondary pulmonary hypertension. Am Heart J, 2000, 139(4): 618-623. |
23. | Morange PE, Simon C, Alessi MC, et al. Endothelial cell markers and the risk of coronary heart disease: the Prospective Epidemiological Study of Myocardial Infarction (PRIME) study. Circulation, 2004, 109(11): 1343-1348. |
24. | Lopes AA, Barreto AC, Maeda NY, et al. Plasma von Willebrand factor as a predictor of survival in pulmonary arterial hypertension associated with congenital heart disease. Braz J Med Biol Res, 2011, 44(12): 1269-1275. |
25. | Uchiyama T, Kurabayashi M, Ohyama Y, et al. Hypoxia induces transcription of the plasminogen activator inhibitor-1 gene through genistein-sensitive tyrosine kinase pathways in vascular endothelial cells. Arterioscler Thromb Vasc Biol, 2000, 20(4): 1155-1161. |
26. | Kawut SM, Horn EM, Berekashvili KK, et al. von Willebrand factor independently predicts long-term survival in patients with pulmonary arterial hypertension. Chest, 2005, 128(4): 2355-2362. |
27. | 周文斌 陈绍军. 血栓调节蛋白和血管性血友病因子与先天性心脏病肺动脉高压关系的研究. 中华儿科杂志, 2000, 38(8): 506-507. |
28. | Spiel AO, Gilbert JC, Jilma B. von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes. Circulation, 2008, 117(11): 1449-1459. |
29. | Diller GP, van Eijl S, Okonko DO, et al. Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation, 2008, 117(23): 3020-3030. |
30. | Rabinovitch M, Andrew M, Thom H, et al. Abnormal endothelial factor VIII associated with pulmonary hypertension and congenital heart defects. Circulation, 1987, 76(5): 1043-1052. |
31. | Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA, 2008, 105(30):10513-10518. |
32. | Ruzinova MB, Benezra R. Id proteins in development, cell cycle and cancer. Trends Cell Biol, 2003, 13(8): 410-418. |
33. | Caruso P, MacLean MR, Khanin R, et al. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vase Biol, 2010, 30(4): 716-723. |
34. | Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA(miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood, 2008, 111(3): 1217-1226. |
35. | Kuehbacher A, Urbich C, Zeiher AM, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res, 2007, 101(1): 59-68. |
36. | 张玲玉, 叶鹏. 微小RNA-204在人肺动脉高压中的作用. 中华高血压杂志, 2011, 19(7): 682. |
37. | 吴志诚, 谢春发, 张自翔. miR-27b在先天性心脏病合并肺动脉高压中的表达及意义. 广东医学, 2013, 34(6): 910-911. |
38. | Courboulin A, Paulin R, Giguere NJ, et al. Role for miR-204 in human pulmonary arterial hypertension. J Exp Med, 2011, 208(3): 535-548. |
39. | Lujambio A, Ropero S. A microRNA DMA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA, 2008, 105(36): 13556-13561. |
40. | Collaboration HS. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA, 2002, 288(16): 2015-2022. |
41. | Rosenquist TH, Ratashak SA, Selhub J. Homocysteine induces congenital defects of the heart and neural tube: effect of folic acid. Proc Natl Acad Sci USA, 1996, 93(26): 15227-15232. |
42. | Botto LD, Mulinare J, Erickson JD. Do multivitamin or folic acid supplements reduce the risk for congenital heart defects? Evidence and gaps. Am J Med Genet A, 2003, 121(2): 95-101. |
43. | Wang XB, Huang XM, Ochs T, et al. Effect of sulfur dioxide preconditioning on rat myocardial ischemia/reperfusion injuiy by inducing endoplasmic reticulum stress. Basic Res Cardiol, 2011, 106(5): 865-878. |
44. | Sun Y, Tian Y, Prabha M, et al. Effects of sulfur dioxide on hypoxic pulmonary vascular structural remodeling. Lab Invest, 2010, 90(1): 68-82. |
45. | Galdieri LC, Arrieta SR, Silva C, et al. Homocysteine concentrations and molecular analysis in patients with congenital heart defects. Arch Med Res, 2007, 38(2): 212-218. |
46. | 董彦博, 李红英, 李军朋, 等. 高同型半胱氨酸血症与先天性心脏病并肺动脉高压的关系. 中华实用儿科临床杂志, 2015, 30(10): 784-785. |
47. | Hassoun PM, Adnot S. Update in pulmonary vascular diseases 2011. Am J Respir Care Med, 2012, 185(11): 1177-1182. |
48. | Luo L, Liu D, Tang C, et al. Sulfur dioxide upregulates the inhibited endogenous hydrogen sulfide pathway in rats with pulmonary hypertension induced by high pulmonary blood fIow. Biochem Biophys Res Commun, 2013, 433: 519-525. |
49. | Yu L, Cecil J, Peng SB, et al. Identification and expression of novel isoforms of human stromal cell-derived factor1. Gene, 2006, 374(2): 174-179. |
50. | Saxena A, Fish JE, White MD, et al. Stromal cell-derived factor-1 alpha is cardioprotective after myocardial infarction. Circulation, 117(17): 2224-2231. |
51. | 贺继刚, 陈智豫. 先天性心脏病合并肺动脉高压发病机制、分类及治疗的研究进展. 云南医药, 2008, 29 (6): 592-595. |
52. | Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol, 2013, 62(25 Suppl): 34-41. |
53. | Hopkins N, McLoughlin P. The structural basis of pulmonary hypertension in chronic lung disease: remodelling, rarefaction or angiogenesis? J Anat, 2002, 201(4): 335-348. |
54. | Sundararaman S, Miller TJ, Pastore JM. Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure. Gene Ther, 2011, 18(9): 867-873. |
55. | 查克岚, 罗程, 李家富. SDF-1/CXCR4与动脉粥样硬化的研究进展. 泸州医学院学报, 2013, 36(3): 300-303. |
56. | 张文宗, 张守彦, 何燕. 血浆 SDF-1A、TGF-B1水平与不同类型冠心病患者和冠状动脉狭窄程度的相关性. 心脏杂志, 2009, 21(2): 220-223. |
57. | Costello CM, Howell K, Cahill E, et al. Lung-selective gene responses to alveolar hypoxia: potential role for the bone morphogenetic antagonist gremlin in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 2008, 295(2): L272-L284. |
58. | Costello CM, McCullagh B, Howell K, et al. A role for the CXCL12 receptor, CXCR7, in the pathogenesis of human pulmonary vascular disease. Eur Respir J, 2012, 39(6): 1415-1424. |
59. | McCullagh BN, Costello CM, Li Li, et al. Elevated plasma CXCL12α is associated with a poorer prognosis in pulmonary arterial hypertension. PLoS One, 2015, 10(4): e0123709. |
- 1. Duffels MG, Engelfriet PM, Berger RM, et al. Pulmonary arterial hypertension in congenital heart disease: an epidemiologic perspective from a Dutch registry. Int J Cardiol, 2007, 120(2): 198-204.
- 2. Diller GP, Gatzoulis MA. Pulmonary vascular disease in adults with congenital heart disease.Circulation, 2007, 115(8): 1039-1050.
- 3. 陈伟丹. microRNA与肺血增多型肺动脉高压的相关性研究. 北京协和医学院, 2011.
- 4. 张清友,杜军保. 肺动脉高压的治疗现状与进展.临床儿科杂志,2010, 28(7): 607-610.
- 5. 李敏, 陈颖敏. 血管紧张素(1-7)对心血管保护作用的研究进展. 心血管病学进展, 2013, 34(1): 100-103.
- 6. Maron BA, Leopold JA. The role of the renin-angiotensin-aldosterone system in the pathobiology of pulmonary arterial hypertension (2013 Grover Conference series). Pulm Circ, 2014, 4(2): 200-210.
- 7. 曾武涛, 马虹, 鲁伟, 等. 血管紧张素-(1-7)在血管紧张素Ⅱ诱导心肌细胞肥大中的作用. 中华心血管病杂志, 2000, 28(6): 460-463.
- 8. 何建桂, 黄艺仪, 马虹, 等. 血管紧张素-(1-7)对心肌肥厚的影响及其与细胞外信号调节激酶的关系. 中国病理生理杂志, 2005, 21(9): 1713-1716.
- 9. Dai H, Gong Y, Xiao Z, et al. Decreased levels of serum angiotension(1-7) in patients with pulmonary arterial hypertension due to congenital heart disease. Int J Cardiol, 2014, 176(3): 1399-1401.
- 10. 吴思婧, 郭雯, 陈梦娜, 等. 血管紧张素1-7预防肺动脉高压右心衰竭发展的实验研究. 心肺血管病杂志, 2015, 34(8): 652-656.
- 11. 张春玲, 康金锁, 陈曦. 等. 心血管病患者血浆N端B型脑钠肽水平变化及其临床意义. 中华检验医学杂志, 2006, 29(3): 3l-34.
- 12. Hammerer-Lercher A, Neubauer E, Muller S, et al. Head-to-head comparision of N-termiual pro-brain natriuretic peptide, brain natriuretic peptide and N-termiual pro-brain natriuretic peptide in diagnosing left ventricular dysfunction. Clin Chim Acta, 2001, 310(2): 193-197.
- 13. Nagaya N, Nishikimi T, Okano Y, et al. Plasma brain natriuretic peptide levels increase in proportion to extent of right ventricular dysfunction in pulmonary hypertensjon. J Am Coil Cardiol, 1998, 31(1): 202-208.
- 14. 张红梅, 柳茵. 肺动脉高压与脑钠肽相关性的探讨. 医学信息, 2011, 31(6):2307-2308.
- 15. Li ZF, Zhou DX, Wang QB, et al. Plasma N-terminal pro-brain natriuretic peptide levels are positively correlated with pulmonary arterial pressure in atrial septal defect patients. Regul Pept, 2013, 183C:13-16.
- 16. 高艺花, I-Seok Kang. 成人先天性心脏病伴肺动脉高压患者超声心动图右心室功能指标和血浆N端脑钠肽前体的相关性研究. 中国现代医学杂志, 2015, 25(1): 74-77.
- 17. Takatsuki S, Wagner BD, Ivy DD. B-type natriuretic peptide and amino-terminal pro-B-type natriuretic peptide in pediatric patients with pulmonary arterial hypertension. Congenit Heart Dis, 2012, 7(3): 259-267.
- 18. Pfister R, Schneider CA. Natriuretic peptides bnp and nt-pro-bnp: Established laboratory markers in clinical practice or just perspectives? Clin Chim Acta, 2004, 349(1): 25-38.
- 19. Silver MA, Maisel A, Yancy CW, et al. Bnp consensus panel 2004: A clinical approach for the diagnostic, prognostic, screening, treatment monitoring, and therapeutic roles of natriuretic peptides in cardiovascular diseases. Congest Heart Fail, 2004, 10(5 Suppl 3): 1-30.
- 20. Bernus A, Wagner BD, Accurso F, et al. Brain natriuretic peptide levels in managing pediatric patients with pulmonary arterial hypertension. Chest, 2009, 135(3):745-751.
- 21. van Loon RL, Roofthooft MT, Delhaas T, et al. Outcome of pediatric patients with pulmonary arterial hypertension in the era of new medical therapies. Am J Cardiol, 2010, 106(1): 117-124.
- 22. Lopes AA, Maeda NY, Goncalves RC, et al. Endothelial cell dysfunction correlates differentially with survival in primary and secondary pulmonary hypertension. Am Heart J, 2000, 139(4): 618-623.
- 23. Morange PE, Simon C, Alessi MC, et al. Endothelial cell markers and the risk of coronary heart disease: the Prospective Epidemiological Study of Myocardial Infarction (PRIME) study. Circulation, 2004, 109(11): 1343-1348.
- 24. Lopes AA, Barreto AC, Maeda NY, et al. Plasma von Willebrand factor as a predictor of survival in pulmonary arterial hypertension associated with congenital heart disease. Braz J Med Biol Res, 2011, 44(12): 1269-1275.
- 25. Uchiyama T, Kurabayashi M, Ohyama Y, et al. Hypoxia induces transcription of the plasminogen activator inhibitor-1 gene through genistein-sensitive tyrosine kinase pathways in vascular endothelial cells. Arterioscler Thromb Vasc Biol, 2000, 20(4): 1155-1161.
- 26. Kawut SM, Horn EM, Berekashvili KK, et al. von Willebrand factor independently predicts long-term survival in patients with pulmonary arterial hypertension. Chest, 2005, 128(4): 2355-2362.
- 27. 周文斌 陈绍军. 血栓调节蛋白和血管性血友病因子与先天性心脏病肺动脉高压关系的研究. 中华儿科杂志, 2000, 38(8): 506-507.
- 28. Spiel AO, Gilbert JC, Jilma B. von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes. Circulation, 2008, 117(11): 1449-1459.
- 29. Diller GP, van Eijl S, Okonko DO, et al. Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation, 2008, 117(23): 3020-3030.
- 30. Rabinovitch M, Andrew M, Thom H, et al. Abnormal endothelial factor VIII associated with pulmonary hypertension and congenital heart defects. Circulation, 1987, 76(5): 1043-1052.
- 31. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA, 2008, 105(30):10513-10518.
- 32. Ruzinova MB, Benezra R. Id proteins in development, cell cycle and cancer. Trends Cell Biol, 2003, 13(8): 410-418.
- 33. Caruso P, MacLean MR, Khanin R, et al. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vase Biol, 2010, 30(4): 716-723.
- 34. Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA(miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood, 2008, 111(3): 1217-1226.
- 35. Kuehbacher A, Urbich C, Zeiher AM, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res, 2007, 101(1): 59-68.
- 36. 张玲玉, 叶鹏. 微小RNA-204在人肺动脉高压中的作用. 中华高血压杂志, 2011, 19(7): 682.
- 37. 吴志诚, 谢春发, 张自翔. miR-27b在先天性心脏病合并肺动脉高压中的表达及意义. 广东医学, 2013, 34(6): 910-911.
- 38. Courboulin A, Paulin R, Giguere NJ, et al. Role for miR-204 in human pulmonary arterial hypertension. J Exp Med, 2011, 208(3): 535-548.
- 39. Lujambio A, Ropero S. A microRNA DMA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA, 2008, 105(36): 13556-13561.
- 40. Collaboration HS. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA, 2002, 288(16): 2015-2022.
- 41. Rosenquist TH, Ratashak SA, Selhub J. Homocysteine induces congenital defects of the heart and neural tube: effect of folic acid. Proc Natl Acad Sci USA, 1996, 93(26): 15227-15232.
- 42. Botto LD, Mulinare J, Erickson JD. Do multivitamin or folic acid supplements reduce the risk for congenital heart defects? Evidence and gaps. Am J Med Genet A, 2003, 121(2): 95-101.
- 43. Wang XB, Huang XM, Ochs T, et al. Effect of sulfur dioxide preconditioning on rat myocardial ischemia/reperfusion injuiy by inducing endoplasmic reticulum stress. Basic Res Cardiol, 2011, 106(5): 865-878.
- 44. Sun Y, Tian Y, Prabha M, et al. Effects of sulfur dioxide on hypoxic pulmonary vascular structural remodeling. Lab Invest, 2010, 90(1): 68-82.
- 45. Galdieri LC, Arrieta SR, Silva C, et al. Homocysteine concentrations and molecular analysis in patients with congenital heart defects. Arch Med Res, 2007, 38(2): 212-218.
- 46. 董彦博, 李红英, 李军朋, 等. 高同型半胱氨酸血症与先天性心脏病并肺动脉高压的关系. 中华实用儿科临床杂志, 2015, 30(10): 784-785.
- 47. Hassoun PM, Adnot S. Update in pulmonary vascular diseases 2011. Am J Respir Care Med, 2012, 185(11): 1177-1182.
- 48. Luo L, Liu D, Tang C, et al. Sulfur dioxide upregulates the inhibited endogenous hydrogen sulfide pathway in rats with pulmonary hypertension induced by high pulmonary blood fIow. Biochem Biophys Res Commun, 2013, 433: 519-525.
- 49. Yu L, Cecil J, Peng SB, et al. Identification and expression of novel isoforms of human stromal cell-derived factor1. Gene, 2006, 374(2): 174-179.
- 50. Saxena A, Fish JE, White MD, et al. Stromal cell-derived factor-1 alpha is cardioprotective after myocardial infarction. Circulation, 117(17): 2224-2231.
- 51. 贺继刚, 陈智豫. 先天性心脏病合并肺动脉高压发病机制、分类及治疗的研究进展. 云南医药, 2008, 29 (6): 592-595.
- 52. Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol, 2013, 62(25 Suppl): 34-41.
- 53. Hopkins N, McLoughlin P. The structural basis of pulmonary hypertension in chronic lung disease: remodelling, rarefaction or angiogenesis? J Anat, 2002, 201(4): 335-348.
- 54. Sundararaman S, Miller TJ, Pastore JM. Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure. Gene Ther, 2011, 18(9): 867-873.
- 55. 查克岚, 罗程, 李家富. SDF-1/CXCR4与动脉粥样硬化的研究进展. 泸州医学院学报, 2013, 36(3): 300-303.
- 56. 张文宗, 张守彦, 何燕. 血浆 SDF-1A、TGF-B1水平与不同类型冠心病患者和冠状动脉狭窄程度的相关性. 心脏杂志, 2009, 21(2): 220-223.
- 57. Costello CM, Howell K, Cahill E, et al. Lung-selective gene responses to alveolar hypoxia: potential role for the bone morphogenetic antagonist gremlin in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 2008, 295(2): L272-L284.
- 58. Costello CM, McCullagh B, Howell K, et al. A role for the CXCL12 receptor, CXCR7, in the pathogenesis of human pulmonary vascular disease. Eur Respir J, 2012, 39(6): 1415-1424.
- 59. McCullagh BN, Costello CM, Li Li, et al. Elevated plasma CXCL12α is associated with a poorer prognosis in pulmonary arterial hypertension. PLoS One, 2015, 10(4): e0123709.