1. |
De Paulis R, Salica A. Surgical anatomy of the aortic valve and root-implications for valve repair. Ann Cardiothorac Surg, 2019, 8(3): 313-321.
|
2. |
李伟浩, 沈晨阳, 张小明, 等. 计算流体力学技术在胸主动脉疾病中的应用. 中华外科杂志, 2015, 53(8): 637-640.
|
3. |
Zhu YL, Chen R, Juan YH, et al. Clinical validation and assessment of aortic hemodynamics using computational fluid dynamics simulations from computed tomography angiography. Biomed Eng Online, 2018, 17(1): 53.
|
4. |
Berdajs D, Mosbahi S, Forro Z, et al. Aortic root haemodynamics following David procedure: Numerical analysis of 3-dimensional haemodynamics. Eur J Cardiothorac Surg, 2016, 49(6): 1588-1598.
|
5. |
Nyrnes SA, Fadnes S, Wigen MS, et al. Blood speckle-tracking based on high-frame rate ultrasound imaging in pediatric cardiology. J Am Soc Echocardiogr, 2020, 33(4): 493-503.
|
6. |
蔡宇燕, 魏薪, 唐红, 等. 应用VFM技术探讨正常成人不同年龄阶段主动脉弓流场特点及规律. 西部医学, 2017, 29(4): 499-502.
|
7. |
Rahman O, Scott M, Bollache E, et al. Interval changes in aortic peak velocity and wall shear stress in patients with bicuspid aortic valve disease. Int J Cardiovasc Imaging, 2019, 35(10): 1925-1934.
|
8. |
Chi Q, He Y, Luan Y, et al. Numerical analysis of wall shear stress in ascending aorta before tearing in type A aortic dissection. Comput Biol Med, 2017, 89: 236-247.
|
9. |
Pasta S, Gentile G, Raffa GM, et al. In silico shear and intramural stresses are linked to aortic valve morphology in dilated ascending aorta. Eur J Vasc Endovasc Surg, 2017, 54(2): 254-263.
|
10. |
Calò K, De Nisco G, Gallo D, et al. Exploring wall shear stress spatiotemporal heterogeneity in coronary arteries combining correlation-based analysis and complex networks with computational hemodynamics. Proc Inst Mech Eng H, 2020, 234(11): 1209-1222.
|
11. |
徐芸, 尹立雪, 王胰, 等. 血流向量成像技术评价高血压患者左心室收缩期能量损耗. 中华超声影像学杂志, 2018, 27(1): 1-5.
|