1. |
Egger M, Smith GD, Phillips AN. Meta-analysis: Principles and procedures. BMJ, 1997, 315(7121): 1533-1537.
|
2. |
Egger M, Davey Smith G, Altman DG, eds. Systematic reviews in health care: Meta-analysis in context. Chapter 15. Statistical methods for examining heterogeneity and combining results from several studies in meta-analysis. BMJ Books, 2001: 285-312.
|
3. |
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials, 1986, 7(3): 177.
|
4. |
Bhaumik DK, Amatya A, Normand SL, et al. Meta-analysis of rare binary adverse event data. J Am Stat Assoc, 2012, 107(498): 555-567.
|
5. |
Efthimiou O. Practical guide to the meta-analysis of rare events. Evid Based Ment Health, 2018, 21(2): 72-76.
|
6. |
Kuss O. Statistical methods for meta-analyses including information from studies without any events-add nothing to nothing and succeed nevertheless. Stat Med, 2015, 34(7): 1097-1116.
|
7. |
Yusuf S, Peto R, Lewis J, et al. Beta blockade during and after myocardial infarction: An overview of the randomized trials. Prog Cardiovasc Dis, 1985, 27(5): 335-371.
|
8. |
Cox, DR. The continuity correction. Biometrika, 1970, 57(1): 217-219.
|
9. |
Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst, 1959, 22(4): 719-48.
|
10. |
Whitehead A, Whitehead J. A general parametric approach to the meta-analysis of randomized clinical trials. Stat Med, 1991, 10(11): 1665-1677.
|
11. |
Böhning D, Mylona K, Kimber A. Meta-analysis of clinical trials with rare events. Biom J, 2015, 57(4): 633-648.
|
12. |
Xu C, Li L, Lin L, et al. Exclusion of studies with no events in both arms in meta-analysis impacted the conclusions. J Clin Epidemiol, 2020, 123: 91-99.
|
13. |
Friedrich JO, Adhikari NK, Beyene J. Inclusion of zero total event trials in meta-analyses maintains analytic consistency and incorporates all available data. BMC Med Res Methodol, 2007, 7: 5.
|
14. |
Platt RW, Leroux BG, Breslow N. Generalized linear mixed models for meta-analysis. Stat Med, 1999, 18(6): 643-654.
|
15. |
Simmonds MC, Higgins JP. A general framework for the use of logistic regression models in meta-analysis. Stat Methods Med Res, 2016, 25(6): 2858-2877.
|
16. |
Jackson D, Law M, Stijnen T, et al. A comparison of seven random-effects models for meta-analyses that estimate the summary odds ratio. Stat Med, 2018, 37(7): 1059-1085.
|
17. |
Chu H, Nie L, Chen Y, et al. Bivariate random effects models for meta-analysis of comparative studies with binary outcomes: Methods for the absolute risk difference and relative risk. Stat Methods Med Res, 2012, 21(6): 621-633.
|
18. |
Mathes T, Kuss O. Beta-binomial models for meta-analysis with binary outcomes: Variations, extensions, and additional insights from econometrics. Rese Meth Med Health Sci, 2021, 2(2): 82-89.
|
19. |
Böhning D, Sangnawakij P. The identity of two meta-analytic likelihoods and the ignorability of double-zero studies. Biostatistics. 2020: kxaa004.
|
20. |
Zorzela L, Golder S, Liu Y, et al. Quality of reporting in systematic reviews of adverse events: Systematic review. BMJ, 2014, 348: f7668.
|
21. |
Xu C, Furuya-Kanamori L, Zorzela L, et al. A proposed framework to guide evidence synthesis practice for meta-analysis with zero-events studies. J Clin Epidemiol, 2021, 135: 70-78.
|
22. |
Bougioukas KI, Liakos A, Tsapas A, et al. Preferred reporting items for overviews of systematic reviews including harms checklist: A pilot tool to be used for balanced reporting of benefits and harms. J Clin Epidemiol, 2018, 93: 9-24.
|
23. |
FDA. What is a serious adverse event? https://www.fda.gov/safety/reporting-serious-problems-fda/what-serious-adverse-event. Accessed on 2020-10-21.
|
24. |
Zorzela L, Loke YK, Ioannidis JP, et al. PRISMA harms checklist: Improving harms reporting in systematic reviews. BMJ, 2016, 352: i157.
|
25. |
Xu C, Liu Y, Jia PL, et al. The methodological quality of dose-response meta-analyses needed substantial improvement: A cross-sectional survey and proposed recommendations. J Clin Epidemiol, 2019, 107: 1-11.
|
26. |
Higgins JPT, Thomas J, Chandler J, et al (editors). Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK): John Wiley & Sons, 2019.
|
27. |
Shan G, Gerstenberger S. Fisher's exact approach for post hoc analysis of a chi-squared test. PLoS One, 2017, 12(12): e0188709.
|
28. |
Zhou Y, Zhu B, Lin L, et al. Protocols for meta-analysis of intervention safety seldom specified methods to deal with rare events. J Clin Epidemiol, 2020, 128: 109-117.
|
29. |
Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med, 2004, 23(9): 1351-1375.
|
30. |
Rücker G, Schumacher M. Simpson's paradox visualized: The example of the rosiglitazone meta-analysis. BMC Med Res Methodol, 2008, 8: 34.
|
31. |
Berstock J, Beswick A. Importance of contacting authors for data on adverse events when compiling systematic reviews. BMJ, 2014, 348: g1394.
|
32. |
Saini P, Loke YK, Gamble C, et al. Selective reporting bias of harm outcomes within studies: Findings from a cohort of systematic reviews. BMJ, 2014, 349: g6501.
|
33. |
Xie MG, Kolassa J, Liu DG, et al. Does an observed zero-total-event study contain information for inference of odds ratio in meta-analysis? Statistics and its Interface, 2018, 11: 327-337.
|
34. |
Cai T, Parast L, Ryan L. Meta-analysis for rare events. Stat Med, 2010, 29(20): 2078-2089.
|
35. |
Xiao M, Lin L, Hodges JS, et al. Double-zero-event studies matter: A re-evaluation of physical distancing, face masks, and eye protection for preventing person-to-person transmission of COVID-19 and its policy impact. J Clin Epidemiol, 2021: S0895-4356(21)00032-9.
|
36. |
Al Amer FM, Thompson CG, Lin L. Bayesian methods for meta-analyses of binary outcomes: Implementations, examples, and impact of priors. Int J Environ Res Public Health, 2021, 18(7): 3492.
|
37. |
Klingenberg B. A new and improved confidence interval for the Mantel-Haenszel risk difference. Stat Med, 2014, 33(17): 2968-2983.
|
38. |
Liu D, Liu RY, Xie M. Exact meta-analysis approach for discrete data and its application to 2×2 tables with rare events. J Am Stat Assoc, 2014, 109(508): 1450-1465.
|
39. |
Bradburn MJ, Deeks JJ, Berlin JA, et al. Much ado about nothing: A comparison of the performance of meta-analytical methods with rare events. Stat Med, 2007, 26(1): 53-77.
|
40. |
Jia P, Lin L, Kwong JSW, et al. Many meta-analyses of rare events in the Cochrane Database of Systematic Reviews were underpowered. J Clin Epidemiol, 2020: S0895-4356(20)31188-4.
|
41. |
Jackson D, Turner R. Power analysis for random-effects meta-analysis. Res Synth Methods, 2017, 8(3): 290-302.
|
42. |
Zeger SL, Liang KY, Albert PS. Models for longitudinal data: A generalized estimating equation approach. Biometrics, 1988, 44(4): 1049-1060.
|
43. |
Ju K, Lin L, Chu H, et al. Laplace approximation, penalized quasi-likelihood, and adaptive Gauss-Hermite quadrature for generalized linear mixed models: Towards meta-analysis of binary outcome with sparse data. BMC Med Res Methodol, 2020, 20(1): 152.
|
44. |
Altman DG, Bland JM. Missing data. BMJ, 2007, 334(7590): 424.
|
45. |
Kahale LA, Khamis AM, Diab B, et al. Potential impact of missing outcome data on treatment effects in systematic reviews: Imputation study. BMJ, 2020, 370: m2898.
|