1. |
Xie F, Yang H, Huang R, et al. Chinese expert consensus on technical specifications of electromagnetic navigation bronchoscopy in diagnosing peripheral pulmonary lesions. J Thorac Dis, 2021, 13(4): 2087-2098.
|
2. |
DiBardino DM, Yarmus LB, Semaan RW. Transthoracic needle biopsy of the lung. J Thorac Dis, 2015, 7(Suppl 4): S304-S316.
|
3. |
Zhan P, Zhu QQ, Miu YY, et al. Comparison between endobronchial ultrasound-guided transbronchial biopsy and CT-guided transthoracic lung biopsy for the diagnosis of peripheral lung cancer: A systematic review and meta-analysis. Transl Lung Cancer Res, 2017, 6(1): 23-34.
|
4. |
Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e142S-e165S.
|
5. |
Criner GJ, Eberhardt R, Fernandez-Bussy S, et al. Interventional bronchoscopy. Am J Respir Crit Care Med, 2020, 202(1): 29-50.
|
6. |
Jiang S, Xie F, Mao X, et al. The value of navigation bronchoscopy in the diagnosis of peripheral pulmonary lesions: A meta-analysis. Thorac Cancer, 2020, 11(5): 1191-1201.
|
7. |
中国医学装备协会呼吸病学装备技术专业委员会, 国产电磁导航支气管镜技术专家组. 国产电磁导航支气管镜系统引导下诊断、定位和治疗技术规范专家共识(2021版). 中国肺癌杂志, 2021, 24(8): 529-537.
|
8. |
Rami-Porta R, Ball D, Crowley J, et al. The IASLC lung cancer staging project: Proposals for the revision of the T descriptors in the forthcoming (seventh) edition of the TNM classification for lung cancer. J Thorac Oncol, 2007, 2(7): 593-602.
|
9. |
Prakash UB. The use of the pediatric fiberoptic bronchoscope in adults. Am Rev Respir Dis, 1985, 132(3): 715-717.
|
10. |
Oki M, Saka H, Ando M, et al. Ultrathin bronchoscopy with multimodal devices for peripheral pulmonary lesions. A randomized trial. Am J Respir Crit Care Med, 2015, 192(4): 468-476.
|
11. |
Oki M, Saka H, Asano F, et al. Use of an ultrathin vs thin bronchoscope for peripheral pulmonary lesions: A randomized trial. Chest, 2019, 156(5): 954-964.
|
12. |
Sumi T, Ikeda T, Sawai T, et al. Comparison of ultrathin bronchoscopy with conventional bronchoscopy for the diagnosis of peripheral lung lesions without virtual bronchial navigation. Respir Investig, 2020, 58(5): 376-380.
|
13. |
Sehgal IS, Dhooria S, Bal A, et al. A retrospective study comparing the ultrathin versus conventional bronchoscope for performing radial endobronchial ultrasound in the evaluation of peripheral pulmonary lesions. Lung India, 2019, 36(2): 102-107.
|
14. |
Zheng X, Xie F, Li Y, et al. Ultrathin bronchoscope combined with virtual bronchoscopic navigation and endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions with or without fluoroscopy: A randomized trial. Thorac Cancer, 2021, 12(12): 1864-1872.
|
15. |
Ali MS, Sethi J, Taneja A, et al. Computed tomography bronchus sign and the diagnostic yield of guided bronchoscopy for peripheral pulmonary lesions. A systematic review and meta-analysis. Ann Am Thorac Soc, 2018, 15(8): 978-987.
|
16. |
Silvestri GA, Herth FJ, Keast T, et al. Feasibility and safety of bronchoscopic transparenchymal nodule access in canines: A new real-time image-guided approach to lung lesions. Chest, 2014, 145(4): 833-838.
|
17. |
Sterman DH, Keast T, Rai L, et al. High yield of bronchoscopic transparenchymal nodule access real-time image-guided sampling in a novel model of small pulmonary nodules in canines. Chest, 2015, 147(3): 700-707.
|
18. |
Herth FJ, Eberhardt R, Sterman D, et al. Bronchoscopic transparenchymal nodule access (BTPNA): First in human trial of a novel procedure for sampling solitary pulmonary nodules. Thorax, 2015, 70(4): 326-332.
|
19. |
Zhong CH, Fan MY, Xu H, et al. Feasibility and safety of radiofrequency ablation guided by bronchoscopic transparenchymal nodule access in canines. Respiration, 2021, 100(11): 1097-1104.
|
20. |
Anciano C, Brown C, Bowling M. Going off road: The first case reports of the use of the transbronchial access tool with electromagnetic navigational bronchoscopy. J Bronchology Interv Pulmonol, 2017, 24(3): 253-256.
|
21. |
Bowling MR, Brown C, Anciano CJ. Feasibility and safety of the transbronchial access tool for peripheral pulmonary nodule and mass. Ann Thorac Surg, 2017, 104(2): 443-449.
|
22. |
Sobieszczyk MJ, Yuan Z, Li W, et al. Biopsy of peripheral lung nodules utilizing cone beam computer tomography with and without trans bronchial access tool: A retrospective analysis. J Thorac Dis, 2018, 10(10): 5953-5959.
|
23. |
Reisenauer J, Simoff MJ, Pritchett MA, et al. Ion: Technology and techniques for shape-sensing robotic-assisted bronchoscopy. Ann Thorac Surg, 2022, 113(1): 308-315.
|
24. |
Rojas-Solano JR, Ugalde-Gamboa L, Machuzak M. Robotic bronchoscopy for diagnosis of suspected lung cancer: A feasibility study. J Bronchology Interv Pulmonol, 2018, 25(3): 168-175.
|
25. |
Chen AC, Pastis NJ, Mahajan AK, et al. Robotic bronchoscopy for peripheral pulmonary lesions: A multicenter pilot and feasibility study (BENEFIT). Chest, 2021, 159(2): 845-852.
|
26. |
Fielding DIK, Bashirzadeh F, Son JH, et al. First human use of a new robotic-assisted fiber optic sensing navigation system for small peripheral pulmonary nodules. Respiration, 2019, 98(2): 142-150.
|
27. |
Yarmus L, Akulian J, Wahidi M, et al. A Prospective randomized comparative study of three guided bronchoscopic approaches for investigating pulmonary nodules: The PRECISION-1 study. Chest, 2020, 157(3): 694-701.
|
28. |
Kalchiem-Dekel O, Connolly JG, Lin IH, et al. Shape-sensing robotic-assisted bronchoscopy in the diagnosis of pulmonary parenchymal lesions. Chest, 2022, 161(2): 572-582.
|
29. |
Jiang S, Liu X, Chen J, et al. A pilot study of the ultrathin cryoprobe in the diagnosis of peripheral pulmonary ground-glass opacity lesions. Transl Lung Cancer Res, 2020, 9(5): 1963-1973.
|
30. |
Rotolo N, Floridi C, Imperatori A, et al. Comparison of cone-beam CT-guided and CT fluoroscopy-guided transthoracic needle biopsy of lung nodules. Eur Radiol, 2016, 26(2): 381-389.
|
31. |
Abi-Jaoudeh N, Fisher T, Jacobus J, et al. Prospective randomized trial for image-guided biopsy using cone-beam CT navigation compared with conventional CT. J Vasc Interv Radiol, 2016, 27(9): 1342-1349.
|
32. |
Pritchett MA, Schampaert S, de Groot JAH, et al. Cone-beam CT with augmented fluoroscopy combined with electromagnetic navigation bronchoscopy for biopsy of pulmonary nodules. J Bronchology Interv Pulmonol, 2018, 25(4): 274-282.
|
33. |
Casal RF, Sarkiss M, Jones AK, et al. Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: A prospective pilot study. J Thorac Dis, 2018, 10(12): 6950-6959.
|
34. |
Ali EAA, Takizawa H, Kawakita N, et al. Transbronchial biopsy using an ultrathin bronchoscope guided by cone-beam computed tomography and virtual bronchoscopic navigation in the diagnosis of pulmonary nodules. Respiration, 2019, 98(4): 321-328.
|
35. |
刘宝东, 叶欣, 范卫君, 等. 影像引导射频消融治疗肺部肿瘤专家共识(2018年版). 中国肺癌杂志, 2018, 21(2): 76-88.
|
36. |
Howington JA, Blum MG, Chang AC, et al. Treatment of stage Ⅰ and Ⅱnon-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e278S-e313S.
|
37. |
Steinfort DP, Herth FJF. Bronchoscopic treatments for early-stage peripheral lung cancer: Are we ready for prime time? Respirology, 2020, 25(9): 944-952.
|
38. |
Ahmed M, Liu Z, Afzal KS, et al. Radiofrequency ablation: Effect of surrounding tissue composition on coagulation necrosis in a canine tumor model. Radiology, 2004, 230(3): 761-767.
|
39. |
Tsushima K, Koizumi T, Tanabe T, et al. Bronchoscopy-guided radiofrequency ablation as a potential novel therapeutic tool. Eur Respir J, 2007, 29(6): 1193-1200.
|
40. |
Tanabe T, Koizumi T, Tsushima K, et al. Comparative study of three different catheters for CT imaging-bronchoscopy-guided radiofrequency ablation as a potential and novel interventional therapy for lung cancer. Chest, 2010, 137(4): 890-897.
|
41. |
Koizumi T, Tsushima K, Tanabe T, et al. Bronchoscopy-guided cooled radiofrequency ablation as a novel intervention therapy for peripheral lung cancer. Respiration, 2015, 90(1): 47-55.
|
42. |
Xie F, Zheng X, Xiao B, et al. Navigation bronchoscopy-guided radiofrequency ablation for nonsurgical peripheral pulmonary tumors. Respiration, 2017, 94(3): 293-298.
|
43. |
Dupuy DE, Fernando HC, Hillman S, et al. Radiofrequency ablation of stage ⅠA non-small cell lung cancer in medically inoperable patients: Results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer, 2015, 121(19): 3491-3498.
|
44. |
Ni Y, Xu H, Ye X. Image-guided percutaneous microwave ablation of early-stage non-small cell lung cancer. Asia Pac J Clin Oncol, 2020, 16(6): 320-325.
|
45. |
Yuan HB, Wang XY, Sun JY, et al. Flexible bronchoscopy-guided microwave ablation in peripheral porcine lung: A new minimally-invasive ablation. Transl Lung Cancer Res, 2019, 8(6): 787-796.
|
46. |
Sebek J, Kramer S, Rocha R, et al. Bronchoscopically delivered microwave ablation in an in vivo porcine lung model. ERJ Open Res, 2020, 6(4): 00146-2020.
|
47. |
Chan JWY, Lau RWH, Ngai JCL, et al. Transbronchial microwave ablation of lung nodules with electromagnetic navigation bronchoscopy guidance—A novel technique and initial experience with 30 cases. Transl Lung Cancer Res, 2021, 10(4): 1608-1622.
|
48. |
Zheng X, Yang C, Zhang X, et al. The Cryoablation for peripheral pulmonary lesions using a novel flexible bronchoscopic cryoprobe in the ex vivo pig lung and liver. Respiration, 2019, 97(5): 457-462.
|
49. |
Zheng X, Yuan H, Gu C, et al. Transbronchial lung parenchyma cryoablation with a novel flexible cryoprobe in an in vivo porcine model. Diagn Interv Imaging, 2022, 103(1): 49-57.
|