1. |
Salari N, Morddarvanjoghi F, Abdolmaleki A, et al. The global prevalence of myocardial infarction: A systematic review and meta-analysis. BMC Cardiovasc Disord, 2023, 23(1): 206.
|
2. |
Liu K, Chen S, Lu R. Identification of important genes related to ferroptosis and hypoxia in acute myocardial infarction based on WGCNA. Bioengineered, 2021, 12(1): 7950-7963.
|
3. |
Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet, 2017, 389(10065): 197-210.
|
4. |
Braunwald E. Unstable angina and non-ST elevation myocardial infarction. Am J Respir Crit Care Med, 2012, 185(9): 924-932.
|
5. |
Kobayashi M, Suhara T, Baba Y, et al. Pathological roles of iron in cardiovascular disease. Curr Drug Targets, 2018, 19(9): 1068-1076.
|
6. |
Wang XD, Kang S. Ferroptosis in myocardial infarction: Not a marker but a maker. Open Biol, 2021, 11(4): 200367.
|
7. |
Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A, 2019, 116(7): 2672-2680.
|
8. |
Wang F, Wang Y, Ji X, et al. Effective macrosomia prediction using random forest algorithm. Int J Environ Res Public Health, 2022, 19(6): 3245.
|
9. |
Xiao Y. Application of neural network algorithm in medical artificial intelligence product development. Comput Math Methods Med, 2022, 2022: 5413202.
|
10. |
Liu C, Zhang X, Chai H, et al. Identification of immune cells and key genes associated with Alzheimer's Disease. Int J Med Sci, 2022, 19(1): 112-125.
|
11. |
Zuo S, Wei M, Wang S, et al. Pan-cancer analysis of immune cell infiltration identifies a prognostic Immune-Cell Characteristic Score (ICCS) in lung adenocarcinoma. Front Immunol, 2020, 11: 1218.
|
12. |
Tian Y, Yang J, Lan M, et al. Construction and analysis of a joint diagnosis model of random forest and artificial neural network for heart failure. Aging (Albany NY), 2020, 12(24): 26221-26235.
|
13. |
She J, Su D, Diao R, et al. A joint model of random forest and artificial neural network for the diagnosis of endometriosis. Front Genet, 2022, 13: 848116.
|
14. |
Bai T, Li M, Liu Y, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med, 2020, 160: 92-102.
|
15. |
Li H, Ding J, Liu W, et al. Plasma exosomes from patients with acute myocardial infarction alleviate myocardial injury by inhibiting ferroptosis through miR-26b-5p/SLC7A11 axis. Life Sci, 2023, 322: 121649.
|
16. |
Young JM, Williams DR, Thompson AAR. Thin air, thick vessels: Historical and current perspectives on hypoxic pulmonary hypertension. Front Med (Lausanne), 2019, 6: 93.
|
17. |
Sun H, Pratt RE, Dzau VJ, et al. Neonatal and adult cardiac fibroblasts exhibit inherent differences in cardiac regenerative capacity. J Biol Chem, 2023, 299(5): 104694.
|
18. |
Kanai Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics. Pharmacol Ther, 2022, 230: 107964.
|
19. |
Li C, Chen S, Jia W, et al. Identify metabolism-related genes IDO1, ALDH2, NCOA2, SLC7A5, SLC3A2, LDHB, and HPRT1 as potential prognostic markers and correlate with immune infiltrates in head and neck squamous cell carcinoma. Front Immunol, 2022, 13: 955614.
|
20. |
Gao X, Hu W, Qian D, et al. The mechanisms of ferroptosis under hypoxia. Cell Mol Neurobiol, 2023, 43(7): 3329-3341.
|
21. |
Zhang R, Pan T, Xiang Y, et al. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioact Mater, 2021, 13: 23-36.
|
22. |
Tian Y, Lu J, Hao X, et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson's Disease. Neurotherapeutics, 2020, 17(4): 1796-1812.
|
23. |
Ju J, Li XM, Zhao XM, et al. Circular RNA FEACR inhibits ferroptosis and alleviates myocardial ischemia/reperfusion injury by interacting with NAMPT. J Biomed Sci, 2023, 30(1): 45.
|
24. |
Zhang Z, Guo M, Li Y, et al. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy, 2020, 16(8): 1482-1505.
|
25. |
Cao Y, Huang W, Wu F, et al. ZFP36 protects lungs from intestinal I/R-induced injury and fibrosis through the CREBBP/p53/p21/Bax pathway. Cell Death Dis, 2021, 12(7): 685.
|
26. |
Taylor GA, Carballo E, Lee DM, et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity, 1996, 4(5): 445-454.
|
27. |
Kubota A, Frangogiannis NG. Macrophages in myocardial infarction. Am J Physiol Cell Physiol, 2022, 323(4): C1304-C1324.
|
28. |
Feng Q, Li Q, Zhou H, et al. The role of major immune cells in myocardial infarction. Front Immunol, 2023, 13: 1084460.
|
29. |
Farbehi N, Patrick R, Dorison A, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife, 2019, 8: e43882.
|
30. |
Li J, Liang C, Yang KY, et al. Specific ablation of CD4+ T-cells promotes heart regeneration in juvenile mice. Theranostics, 2020, 10(18): 8018-8035.
|
31. |
Guo S, Wu J, Zhou W, et al. Identification and analysis of key genes associated with acute myocardial infarction by integrated bioinformatics methods. Medicine (Baltimore), 2021, 100(15): e25553.
|
32. |
Chen Y, Tao Y, Zhang L, et al. Diagnostic and prognostic value of biomarkers in acute myocardial infarction. Postgrad Med J, 2019, 95(1122): 210-216.
|
33. |
Shi G, Liu G, Gao Q, et al. A random forest algorithm-based prediction model for moderate to severe acute postoperative pain after orthopedic surgery under general anesthesia. BMC Anesthesiol, 2023, 23(1): 361.
|