1. |
Wang F, Preininger A. AI in health: State of the art, challenges, and future directions. Yearb Med Inform, 2019, 28(1): 16-26.
|
2. |
Ray A, Bhardwaj A, Malik YK, et al. Artificial intelligence and Psychiatry: An overview. Asian J Psychiatr, 2022, 70: 103021.
|
3. |
Ali O, Abdelbaki W, Shrestha A, et al. A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. J Innov Knowl, 2023, 8(1): 100333.
|
4. |
Melnyk O, Ismail A, Ghorashi NS, et al. Generative artificial intelligence terminology: A primer for clinicians and medical researchers. Cureus, 2023, 15(12): e49890.
|
5. |
He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine. Nat Med, 2019, 25(1): 30-36.
|
6. |
Esteva A, Chou K, Yeung S, et al. Deep learning-enabled medical computer vision. NPJ Digit Med, 2021, 4(1): 5.
|
7. |
Waldman CE, Hermel M, Hermel JA, et al. Artificial intelligence in healthcare: A primer for medical education in radiomics. Per Med, 2022, 19(5): 445-456.
|
8. |
Murali L, Gopakumar G, Viswanathan DM, et al. Towards electronic health record-based medical knowledge graph construction, completion, and applications: A literature study. J Biomed Inform, 2023, 143: 104403.
|
9. |
Hutson M. Hypotheses devised by AI could find 'blind spots' in research. Nature, 2023, Epub ahead of print.
|
10. |
Acosta JN, Falcone GJ, Rajpurkar P, et al. Multimodal biomedical AI. Nat Med, 2022, 28(9): 1773-1784.
|
11. |
Guo K, Wu M, Soo Z, et al. Artificial intelligence-driven biomedical genomics. Knowledge-Based Systems, 2023, 279: 110937.
|
12. |
Feuerriegel S, Frauen D, Melnychuk V, et al. Causal machine learning for predicting treatment outcomes. Nat Med, 2024, 30(4): 958-968.
|
13. |
Deng S, Li C, Cao J, et al. Organ-on-a-chip meets artificial intelligence in drug evaluation. Theranostics, 2023, 13(13): 4526-4558.
|
14. |
Li ZA, Sant S, Cho SK, et al. Synovial joint-on-a-chip for modeling arthritis: progress, pitfalls, and potential. Trends Biotechnol, 2023, 41(4): 511-527.
|
15. |
Dasgupta I, Rangineni DP, Abdelsaid H, et al. Tiny organs, big impact: how microfluidic organ-on-chip technology is revolutionizing mucosal tissues and vasculature. Bioengineering (Basel), 2024, 11(5): 476.
|
16. |
Thenuwara G, Javed B, Singh B, et al. Biosensor-enhanced organ-on-a-chip models for investigating glioblastoma tumor microenvironment dynamics. Sensors (Basel), 2024, 24(9): 2865.
|
17. |
Holland I, Davies JA. Automation in the life science research laboratory. Front Bioeng Biotechnol, 2020, 8: 571777.
|
18. |
Gholap AD, Uddin MJ, Faiyazuddin M, et al. Advances in artificial intelligence for drug delivery and development: A comprehensive review. Comput Biol Med, 2024 Aug: 178: 108702.
|
19. |
Khan MK, Raza M, Shahbaz M, et al. The recent advances in the approach of artificial intelligence (AI) towards drug discovery. Front Chem, 2024 May 31: 12: 1408740.
|
20. |
Yadav S, Singh A, Singhal R, et al. Revolutionizing drug discovery: The impact of artificial intelligence on advancements in pharmacology and the pharmaceutical industry. Intelligent Pharmacy, 2024, 2(3): 367-380.
|
21. |
Kline A, Wang H, Li Y, et al. Multimodal machine learning in precision health: A scoping review. NPJ Digit Med, 2022, 5(1): 171.
|
22. |
Zheng S, Zhu Z, Liu Z, et al. Multi-modal graph learning for disease prediction. IEEE Trans Med Imaging, 2022, 41(9): 2207-2216.
|
23. |
Carini C, Seyhan AA. Tribulations and future opportunities for artificial intelligence in precision medicine. J Transl Med, 2024, 22(1): 411.
|
24. |
Delpino FM, Costa ÂK, Farias SR, et al. Machine learning for predicting chronic diseases: A systematic review. Public Health, 2022, 205-214.
|
25. |
Alimadadi A, Aryal S, Manandhar I, et al. Artificial intelligence and machine learning to fight COVID-19. Physiol Genomics, 2020, 52(4): 200-202.
|
26. |
Chisom O, Biu P, Umoh A, et al. Reviewing the role of AI in environmental monitoring and conservation: A data-driven revolution for our plane. World J Adv Res Rev, 2024, 21(1): 161-171.
|
27. |
Mensah GA, Fuster V, Murray CJL, et al. Global Burden of cardiovascular diseases and risks, 1990-2022. J Am Coll Cardiol, 2023, 82(25): 2350-2473.
|
28. |
Hoang T, Ky NM, Thuong NTN, et al. Artificial intelligence in pollution control and management: Status and future prospects. In: Ong HL, Doong R, Naguib R, Lim CP, Nagar AK, Chief editor. Artificial Intelligence and Environmental Sustainability: Challenges and Solutions in the Era of Industry 4.0. Singapore: Springer Nature Singapore, 2022: 23-43 https://doi.org/10.1007/978-981-19-1434-8_2.
|
29. |
Goh YS, Ow Yong JQY, Chee BQH, et al. Machine learning in health promotion and behavioral change: Scoping review. J Med Internet Res, 2022, 24(6): e35831.
|
30. |
Olawade DB, Wada OJ, David-Olawade AC, et al. Using artificial intelligence to improve public health: A narrative review. Front Public Health, 2023, 11: 1196397.
|
31. |
Hossain E, Rana R, Higgins N, et al. Natural language processing in electronic health records in relation to healthcare decision-making: A systematic review. Comput Biol Med, 2023, 155: 106649.
|
32. |
Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: General overview. Korean J Radiol, 2017, 18(4): 570-584.
|
33. |
Chugh A, Jain C. A Systematic Review on ECG and EMG biomedical signal using deep-learning approaches. In: Manju KS, Islam SMN. Artificial Intelligence-based Healthcare Systems, Cham: Springer Nature Switzerland. 2023: 145-161.
|
34. |
McGenity C, Clarke EL, Jennings C, et al. Artificial intelligence in digital pathology: A systematic review and meta-analysis of diagnostic test accuracy. NPJ Digit Med, 2024, 7(1): 114.
|
35. |
Wekesa JS, Kimwele M. A review of multi-omics data integration through deep learning approaches for disease diagnosis, prognosis, and treatment. Front Genet, 2023, 14: 1199087.
|
36. |
Ohta T, Hananoe A, Fukushima-Nomura A, et al. Best practices for multimodal clinical data management and integration: An atopic dermatitis research case. Allergol Int, 2024, 73(2): 255-263.
|
37. |
Haug CJ, Drazen JM. Artificial intelligence and machine learning in clinical medicine, 2023. N Engl J Med, 2023, 388(13): 1201-1208.
|
38. |
Yalavarthi S. AI in medicine: From diagnosis to treatment decision support. Intern J Emerg Technol Innov Res, 2023, 10(10): e214-e217.
|
39. |
Fernandes JG. Artificial intelligence in telemedicine. In: Lidströmer N, Ashrafian H. (eds) Artificial Intelligence in Medicine. Springer, Cham. 2022, 1219-1227.
|
40. |
Rezaei T, Khouzani PJ, Khouzani SJ, et al. Integrating artificial intelligence into telemedicine: revolutionizing healthcare delivery. Kindle, 2023, 3(1): 1-161.
|
41. |
Farrow L, Meek D, Leontidis G, et al. The Clinical practice integration of artificial intelligence (CPI-AI) framework. Bone Joint Res, 2024, 13(9): 507-512.
|
42. |
Singh M, Nath G. Artificial intelligence and anesthesia: A narrative review. Saudi J Anaesth, 2022, 16(1): 86-93.
|
43. |
Song B, Zhou M, Zhu J. Necessity and Importance of Developing AI in anesthesia from the perspective of clinical safety and information security. Med Sci Monit, 2023, 29: e938835.
|
44. |
Mamo HB, Adamiak M, Kunwar A. 3D printed biomedical devices and their applications: A review on state-of-the-art technologies, existing challenges, and future perspectives. J Mech Behav Biomed Mater, 2023, 143: 105930.
|
45. |
Lanotte F, O'Brien MK, Jayaraman A. AI in rehabilitation medicine: Opportunities and challenges. Ann Rehabil Med, 2023, 47(6): 444-458.
|
46. |
Abedi A, Colella TJF, Pakosh M, et al. Artificial intelligence-driven virtual rehabilitation for people living in the community: A scoping review. NPJ Digit Med, 2024, 7(1): 25.
|
47. |
Khokale R, S Mathew G, Ahmed S, et al. Virtual and augmented reality in post-stroke rehabilitation: A narrative review. Cureus, 2023, 15(4): e37559.
|
48. |
Omarov B, Narynov S, Zhumanov Z. Artificial intelligence-enabled chatbots in mental health: A systematic review. Computers, Materials & Continua, 2023, 74(3): 5105-5122.
|
49. |
Al Kuwaiti A, Nazer K, Al-Reedy A, et al. A review of the role of artificial intelligence in healthcare. J Pers Med, 2023, 13(6): 951.
|
50. |
Jeddi Z, Bohr A, Chief editor. Remote patient monitoring using artificial intelligence. Academic Press, 2020, 203-234.
|
51. |
Hunter DJ, Holmes C. Where medical statistics meets artificial intelligence. N Engl J Med, 2023, 389(13): 1211-1219.
|
52. |
Hernandez AF, Lindsell CJ. The future of clinical trials: Artificial to augmented to applied intelligence. JAMA, 2023, 330(21): 2061-2063.
|
53. |
Cunningham JW, Singh P, Reeder C, et al. Natural language processing for adjudication of heart failure in a multicenter clinical trial: A secondary analysis of a randomized clinical trial. JAMA Cardiol, 2024, 9(2): 174-181.
|
54. |
Mahaffey KW, Gibson CM, Lopes RD. Innovation in event adjudication-human vs machine. JAMA Cardiol, 2024, 9(2): 101-102.
|
55. |
Cruz Rivera S, Liu X, Chan AW, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. Nat Med, 2020, 26(9): 1351-1363.
|
56. |
Liu X, Cruz Rivera S, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-AI extension. Nat Med, 2020, 26(9): 1364-1374.
|
57. |
Bhagat SV, Kanyal D. Navigating the future: The transformative impact of artificial intelligence on hospital management— A comprehensive review. Cureus, 2024, 16(2): e54518.
|
58. |
Riyanti R. Legal status of artificial intelligence-based health insurance services: Challenges, opportunities for customer protection. Intern J Health Sci, 2023, 6(2): 1023-1034.
|
59. |
Jebreen K, Radwan E, Kammoun-Rebai W, et al. Perceptions of undergraduate medical students on artificial intelligence in medicine: Mixed-methods survey study from Palestine. BMC Med Educ, 2024, 24(1): 507.
|
60. |
Knopp MI, Warm EJ, Weber D, et al. AI-enabled medical education: Threads of change, promising futures, and risky realities across four potential future worlds. JMIR Med Educ, 2023, 9: e50373.
|
61. |
Ong JCL, Chang SY, William W, et al. Ethical and regulatory challenges of large language models in medicine. Lancet Digit Health, 2024, 6(6): 428-432.
|
62. |
Kumar P, Chauhan S, Awasthi LK. Artificial intelligence in healthcare: Review, ethics, trust challenges & future research directions. Eng Appl Artif Intell, 2023, 120: 105894.
|
63. |
Wang Y, Liu K, He Y, et al. Enhancing air quality forecasting: A novel spatio-temporal model integrating graph convolution and multi-head attention mechanism. Atmosphere, 2024, 15(4): 418.
|
64. |
Zhang Y, Sun B, Yu Y, et al. Multimodal fusion of liquid biopsy and CT enhances differential diagnosis of early-stage lung adenocarcinoma. NPJ Precis Oncol, 2024, 8(1): 50.
|
65. |
Esmaeilzadeh P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artif Intell Med, 2024, 151: 102861.
|
66. |
Singh AP, Saxena R, Saxena S, et al. Artificial intelligence revolution in healthcare: Transforming diagnosis, treatment, and patient care. Asian J Advances Res, 2024, 7(1): 241-263.
|
67. |
Reddy S. Generative AI in healthcare: An implementation science informed translational path on application, integration and governance. Implement Sci, 2024, 19(1): 27.
|
68. |
Stark L. Medicine's Lessons for AI Regulation. N Engl J Med, 2023, 389(24): 2213-2215.
|