| 1. |
国家心血管病中心, 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2024概要. 中国循环杂志, 2025, 40(6): 521-559.National Center for Cardiovascular Diseases, The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases in China 2024: an updated summary. Chin Circ J, 2025, 40(6): 521-559.
|
| 2. |
国家心血管病中心, 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2023概要. 中国循环杂志, 2024, 39(7): 625-660.National Center for Cardiovascular Diseases, The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases in China 2023: an updated summary. Chin Circ J, 2024, 39(7): 625-660.
|
| 3. |
Simsek B, Rynders BD, Okeson BK, et al. Coronary angiography within 30 days from coronary artery bypass graft surgery: indications, findings, and outcomes. J Invasive Cardiol, 2023, 35(5): E248-E253.
|
| 4. |
Alghafees MA, Alsubaie NA, Alsadoon LK, et al. Thirty-day readmission rates and associated risk factors after coronary artery bypass grafting. J Taibah Univ Med Sci, 2020, 15(4): 292-297.
|
| 5. |
Case R, George J, Li Q, et al. Unplanned 30-day readmission after coronary artery bypass in patients with acute myocardial infarction. Cardiovasc Revasc Med, 2020, 21(4): 518-521.
|
| 6. |
Amritphale A, Fonarow GC, Amritphale N, et al. All-cause unplanned readmissions in the United States: insights from the Nationwide Readmission Database. Intern Med J, 2023, 53(2): 262-270.
|
| 7. |
Shah RM, Zhang Q, Chatterjee S, et al. Incidence, cost, and risk factors for readmission after coronary artery bypass grafting. Ann Thorac Surg, 2019, 107(6): 1782-1789.
|
| 8. |
Rosenblum JM, Lovasik BP, Hunting JC, et al. Predicted risk of mortality score predicts 30-day readmission after coronary artery bypass grafting. Gen Thorac Cardiovasc Surg, 2019, 67(8): 661-668.
|
| 9. |
Brown JR, Parker DM, Stabler ME, et al. Improving the prediction of long-term readmission and mortality using a novel biomarker panel. J Card Surg, 2021, 36(11): 4213-4223.
|
| 10. |
Moons KGM, de Groot JAH, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 2014, 11(10): e1001744.
|
| 11. |
鲁小丹, 卫建华, 沈建通, 等. 预测模型系统评价的制作方法与步骤. 中国循证医学杂志, 2023, 23(5): 602-609.Lu XD, Wei JH, Shen JT, et al. Methods and processes for producing a systematic review of predictive model studies. Chin J Evid Based Med, 2023, 23(5): 602-609.
|
| 12. |
Engoren M, Habib RH, Dooner JJ, et al. Use of genetic programming, logistic regression, and artificial neural nets to predict readmission after coronary artery bypass surgery. J Clin Monit Comput, 2013, 27(4): 455-464.
|
| 13. |
Shahian DM, He X, O'Brien SM, et al. Development of a clinical registry-based 30-day readmission measure for coronary artery bypass grafting surgery. Circulation, 2014, 130(5): 399-409.
|
| 14. |
Lancey R, Kurlansky P, Argenziano M, et al. Uniform standards do not apply to readmission following coronary artery bypass surgery: a multi-institutional study. J Thorac Cardiovasc Surg, 2015, 149(3): 850-857.
|
| 15. |
Fanari Z, Elliott D, Russo CA, et al. Predicting readmission risk following coronary artery bypass surgery at the time of admission. Cardiovasc Revasc Med, 2017, 18(2): 95-99.
|
| 16. |
Benuzillo J, Caine W, Evans RS, et al. Predicting readmission risk shortly after admission for CABG surgery. J Card Surg, 2018, 33(4): 163-170.
|
| 17. |
Zywot A, Lau CSM, Glass N, et al. Preoperative scale to determine all-cause readmission after coronary artery bypass operations. Ann Thorac Surg, 2018, 105(4): 1086-1093.
|
| 18. |
Deo SV, Raza S, Altarabsheh SE, et al. Risk calculator to predict 30-day readmission after coronary artery bypass: a strategic decision support tool. Heart Lung Circ, 2019, 28(12): 1896-1903.
|
| 19. |
Liu G, Zhang Y, Zhang W, et al. A risk prediction model of readmission for Chinese patients after coronary artery bypass grafting. Heart Surg Forum, 2021, 24(3): E479-E483.
|
| 20. |
Manyam R, Zhang YQ, Carter S, et al. Unraveling the impact of time-dependent perioperative variables on 30-day readmission after coronary artery bypass surgery. J Thorac Cardiovasc Surg, 2022, 164(3): 943-952.
|
| 21. |
Zea-Vera R, Ryan CT, Havelka J, et al. Machine learning to predict outcomes and cost by phase of care after coronary artery bypass grafting. Ann Thorac Surg, 2022, 114(3): 711-719.
|
| 22. |
丁琰俊, 杭琤, 张明, 等. 冠状动脉旁路移植术患者术后早期再入院风险预测模型的构建. 护士进修杂志, 2022, 37(12): 1125-1129.Ding YJ, Hang C, Zhang M, et al. Construction of a risk prediction model for early readmission in patients after coronary artery bypass grafting. J Nurses Train, 2022, 37(12): 1125-1129.
|
| 23. |
朱艳美. 冠状动脉旁路移植术后非计划再入院风险预测模型的构建与验证. 北京: 北京协和医学院, 2024.Zhu YM. Risk prediction model and validation of unplanned readmission after coronary artery bypass transplantation. Beijing: Peking Union Medical College, 2024.
|
| 24. |
曹勖, 王梧圩, 姜宏伟, 等. 单纯冠状动脉旁路移植术出院后30 d内非计划再入院风险预测模型构建与验证. 中国胸心血管外科临床杂志, 2025, 32(5): 646-654.Cao X, Wang WX, Jiang HW, et al. Construction and validation of a risk prediction model of unplanned 30-day readmission in patients after isolated coronary artery bypass grafting. Chin J Clin Thorac Cardiovasc Surg, 2025, 32(5): 646-654.
|
| 25. |
Shawon MSR, Odutola M, Falster MO, et al. Patient and hospital factors associated with 30-day readmissions after coronary artery bypass graft (CABG) surgery: a systematic review and meta-analysis. J Cardiothorac Surg, 2021, 16(1): 172.
|
| 26. |
Sadeghi R. Coronary artery bypass grafting in advance aged patients. ARYA Atheroscler, 2023, 19(4): 37-45.
|
| 27. |
Mitsutake S, Ishizaki T, Tsuchiya-Ito R, et al. Association of cognitive impairment severity with potentially avoidable readmissions: a retrospective cohort study of 8897 older patients. Alzheimers Dement (Amst), 2021, 13(1): e12147.
|
| 28. |
Osherov A, Gallego-Colon E, Abu-Alkean I, et al. Gender differences in the incidence of saphenous vein graft intervention. J Cardiothorac Surg, 2024, 19(1): 643.
|
| 29. |
Sabe SA, Sabe MA, Kennedy KF, et al. Risk factors for heart failure readmission after cardiac surgery. JACC Adv, 2023, 2(8): 100599.
|
| 30. |
Yang DR, Wang MY, Zhang CL, et al. Endothelial dysfunction in vascular complications of diabetes: a comprehensive review of mechanisms and implications. Front Endocrinol (Lausanne), 2024, 15: 135925.
|
| 31. |
崔严奇, 杨鲸蓉, 倪琳, 等. 基于机器学习算法构建浸润性肺腺癌预后预测模型. 中国胸心血管外科临床杂志, 2025, 32(1): 80-86.Cui YQ, Yang JR, Ni L, et al. Construction of a prognostic prediction model for invasive lung adenocarcinoma based on machine learning. Chin J Clin Thorac Cardiovasc Surg, 2025, 32(1): 80-86.
|
| 32. |
陈香萍, 张奕, 庄一渝, 等. PROBAST: 诊断或预后多因素预测模型研究偏倚风险的评估工具. 中国循证医学杂志, 2020, 20(6): 737-744.Chen XP, Zhang Y, Zhuang YY, et al. PROBAST: a tool for assessing the risk of bias in the study of diagnostic or prognostic multi-factorial predictive models. Chin J Evid Based Med, 2020, 20(6): 737-744.
|
| 33. |
Asiimwe IG, Ndzamba BS, Mouksassi S, et al. Machine-learning assisted screening of correlated covariates: application to clinical data of desipramine. AAPS J, 2024, 26(4): 63.
|
| 34. |
高湘金, 肇晖, 王瑞平. 限制性立方样条在临床研究数据分析中的应用. 上海医药, 2024, 45(13): 29-33.Gao XJ, Zhao H, Wang RP, et al. Application of restricted cubic splines in clinical research data analysis. Shanghai Med Pharm J, 2024, 45(13): 29-33.
|
| 35. |
Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med, 2019, 170(1): 51-58.
|
| 36. |
高瑞磊, 王丹, 戴国华, 等. 心力衰竭患者出院后再入院风险预测模型的系统评价. 中国胸心血管外科临床杂志, 2025, 32(5): 677-684.Gao RL, Wang D, Dai GH, et al. Re-admission risk prediction models for patients with heart failure after discharge: a systematic review. Chin J Clin Thorac Cardiovasc Surg, 2025, 32(5): 677-684.
|