1. |
蔡成, 俞继卫, 姜波健. 肿瘤起始细胞及上皮-间质转化在肿瘤转移及耐药中的作用. 中国普外基础与临床杂志, 2013, 20(1): 99-103.
|
2. |
Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA, 2003, 100(7): 3983-3988.
|
3. |
Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007, 1(5): 555-567.
|
4. |
Chiotaki R, Polioudaki H, Theodoropoulos PA. Stem cell technology in breast cancer: current status and potential applications. Stem Cells Cloning, 2016, 9: 17-29.
|
5. |
Vermeulen L, de Sousa e Melo F, Richel DJ, et al. The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol, 2012, 13(2): e83-e89.
|
6. |
Liu S, Cong Y, Wang D, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports, 2013, 2(1): 78-91.
|
7. |
Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA, 2007, 104(24): 10158-10163.
|
8. |
Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 2010, 467(7319): 1114-1117.
|
9. |
赵宁, 傅深. 不同表型的乳腺癌干细胞研究现状及其临床应用价值. 中国癌症杂志, 2016, 26(8): 699-703.
|
10. |
Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet, 2013, 45(10): 1113-1120.
|
11. |
Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell, 2015, 16(3): 225-238.
|
12. |
Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest, 2011, 121(10): 3804-3809.
|
13. |
Liu S, Ginestier C, Ou SJ, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res, 2011, 71(2): 614-624.
|
14. |
Li K, Kang H, Wang Y, et al. Letrozole-induced functional changes in carcinoma-associated fibroblasts and their influence on breast cancer cell biology. Med Oncol, 2016, 33(7): 64.
|
15. |
Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev, 2016, 30(9): 1002-1019.
|
16. |
Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, et al. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle, 2010, 9(12): 2423-2433.
|
17. |
Buchsbaum RJ, Oh SY. Breast cancer-associated fibroblasts: Where we are and where we need to go. Cancers (Basel), 2016, 8(2). pii: E19.
|
18. |
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med, 2014, 211(8): 1503-1523.
|
19. |
Pallangyo CK, Ziegler PK, Greten FR. IKKβ acts as a tumor suppressor in cancer-associated fibroblasts during intestinal tumorigenesis. J Exp Med, 2015, 212(13): 2253-2266.
|
20. |
Koliaraki V, Pasparakis M, Kollias G. IKKβ in intestinal mesenchymal cells promotes initiation of colitis-associated cancer. J Exp Med, 2015, 212(13): 2235-2251.
|
21. |
Wagner EF. Cancer: Fibroblasts for all seasons. Nature, 2016, 530(7588): 42-43.
|
22. |
Bussard KM, Mutkus L, Stumpf K, et al. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res, 2016, 18(1): 84.
|
23. |
Luo M, Brooks M, Wicha MS. Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance. Curr Pharm Des, 2015, 21(10): 1301-1310.
|
24. |
韩雅丽, 张晏文, 王琳琳, 等. 癌相关成纤维细胞促进肿瘤进展的复杂分子机制探讨. 癌症进展, 2016, 14(1): 36-39.
|
25. |
Scheel C, Eaton EN, Li SH, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell, 2011, 145(6): 926-940.
|
26. |
Chaffer CL, Marjanovic ND, Lee T, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell, 2013, 154(1): 61-74.
|
27. |
Giannoni E, Bianchini F, Masieri L, et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res, 2010, 70(17): 6945-6956.
|
28. |
McCuaig R, Wu F, Dunn J, et al. The biological and clinical significance of stromal-epithelial interactions in breast cancer. Pathology, 2017, 49(2): 133-140.
|
29. |
Wolfson B, Eades G, Zhou Q. Adipocyte activation of cancer stem cellsignaling in breast cancer. World J Biol Chem, 2015, 6(2): 39-47.
|
30. |
Korkaya H, Kim GI, Davis A, et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell, 2012, 47(4): 570-584.
|
31. |
Giordano C, Chemi F, Panza S, et al. Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity. Oncotarget, 2016, 7(2): 1262-1275.
|
32. |
Oskarsson T, Batlle E, Massagué J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell, 2014, 14(3): 306-321.
|
33. |
Zhang XH, Jin X, Malladi S, et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell, 2013, 154(5): 1060-1073.
|
34. |
Erdogan B, Webb DJ. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans, 2017, 45(1): 229-236.
|
35. |
Oskarsson T, Acharyya S, Zhang XH, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med, 2011, 17(7): 867-874.
|
36. |
Jung YY, Kim HM, Koo JS. The role of cancer-associated fibroblasts in breast cancer pathobiology. Histol Histopathol, 2016, 31(4): 371-378.
|
37. |
Tchou J, Kossenkov AV, Chang L, et al. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics, 2012, 5: 39.
|