Citation: 陆德珉, 张苏展. 精准医疗时代下对结直肠癌的分子分型与预后预测的展望. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2017, 24(11): 1297-1300. doi: 10.7507/1007-9424.201711001 Copy
1. | Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132. |
2. | Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin, 2017, 67(1): 7-30. |
3. | Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell, 1990, 61(5): 759-767. |
4. | Nelson S, Näthke IS. Interactions and functions of the adenomatous polyposis coli (APC) protein at a glance. J Cell Sci, 2013, 126(Pt 4): 873-877. |
5. | Chen TH, Chang SW, Huang CC, et al. The prognostic significance of APC gene mutation and miR-21 expression in advanced-stage colorectal cancer. Colorectal Dis, 2013, 15(11): 1367-1374. |
6. | Gonzalez-Pons M, Cruz-Correa M. Colorectal cancer biomarkers: where are we now? Biomed Res Int, 2015, 2015: 149014. |
7. | Novellasdemunt L, Foglizzo V, Cuadrado L, et al. USP7 is a tumor-specific WNT activator for APC-mutated colorectal cancer by mediating β-catenin deubiquitination. Cell Rep, 2017, 21(3): 612-627. |
8. | Liang J, Lin C, Hu F, et al. APC polymorphisms and the risk of colorectal neoplasia: a HuGE review and meta-analysis. Am J Epidemiol, 2013, 177(11): 1169-1179. |
9. | Suzuki S, Tanaka T, Poyurovsky MV, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci U S A, 2010, 107(16): 7461-7466. |
10. | Cai X, Qi WX, Wang L, et al. Correlation of multiple proteins with clinic-pathological features and its prognostic significance in colorectal cancer with signet-ring cell component. Eur Rev Med Pharmacol Sci, 2016, 20(16): 3358-3367. |
11. | Muller PA, Vousden KH. p53 mutations in cancer. Nature Cell Biol, 2013, 15: 2-8. |
12. | Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell, 2014, 25(3): 304-317. |
13. | Wang P, Liang J, Wang Z, et al. The prognostic value of p53 positive in colorectal cancer: a retrospective cohort study. Tumour Biol, 2017, 39(5): 1010428317703651. |
14. | Kowalczyk AE, Krazinski BE, Godlewski J, et al. Expression of the EP300, TP53 and BAX genes in colorectal cancer: correlations with clinicopathological parameters and survival. Oncol Rep, 2017, 38(1): 201-210. |
15. | Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol, 2007, 8(12): 970-982. |
16. | Alhopuro P, Alazzouzi H, Sammalkorpi H, et al. SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clin Cancer Res, 2005, 11(17): 6311-6316. |
17. | Losi L, Bouzourene H, Benhattar J. Loss of Smad4 expression predicts liver metastasis in human colorectal cancer. Oncol Rep, 2007, 17(5): 1095-1099. |
18. | Li X, Liu B, Xiao J, et al. Roles of VEGF-C and Smad4 in the lymphangiogenesis, lymphatic metastasis, and prognosis in colon cancer. J Gastrointest Surg, 2011, 15(11): 2001-2010. |
19. | Zhang B, Zhang B, Chen X, et al. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway. Br J Cancer, 2014, 110(4): 946-957. |
20. | Janakiraman M, Vakiani E, Zeng Z, et al. Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res, 2010, 70(14): 5901-5911. |
21. | Hancock JF. Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol, 2003, 4(5): 373-384. |
22. | De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol, 2010, 11(8): 753-762. |
23. | Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med, 2013, 369(11): 1023-1034. |
24. | Loupakis F, Ruzzo A, Cremolini C, et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer, 2009, 101(4): 715-721. |
25. | Rimbert J, Tachon G, Junca A, et al. Association between clinicopathological characteristics and RAS mutation in colorectal cancer. Mod Pathol, 2017, [Epub ahead of print]. |
26. | Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004, 304(5670): 554. |
27. | Uddin S, Ahmed M, Hussain A, et al. Cyclooxygenase-2 inhibition inhibits PI3K/AKT kinase activity in epithelial ovarian cancer. Int J Cancer, 2010, 126(2): 382-394. |
28. | Paleari L, Puntoni M, Clavarezza M, et al. PIK3CA mutation, aspirin use after diagnosis and survival of colorectal cancer. a systematic review and meta-analysis of epidemiological studies. Clin Oncol (R Coll Radiol), 2016, 28(5): 317-326. |
29. | Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology, 2010, 138(6): 2059-2072. |
30. | Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med, 2015, 21(3): 256-262. |
31. | Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012, 487(7407): 330-337. |
32. | Kloor M, Staffa L, Ahadova A, et al. Clinical significance of microsatellite instability in colorectal cancer. Langenbecks Arch Surg, 2014, 399(1): 23-31. |
33. | Smyrk TC, Watson P, Kaul K, et al. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer, 2001, 91(12): 2417-2422. |
34. | Dorard C, de Thonel A, Collura A, et al. Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nat Med, 2011, 17(10): 1283-1289. |
35. | Tikidzhieva A, Benner A, Michel S, et al. Microsatellite instability and Beta2-Microglobulin mutations as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer, 2012, 106(6): 1239-1245. |
36. | Weisenberger DJ, Liang G, Lenz HJ. DNA methylation aberrancies delineate clinically distinct subsets of colorectal cancer and provide novel targets for epigenetic therapies. Oncogene, 2017, [Epub ahead of print]. |
37. | Weisenberger DJ, Levine AJ, Long TI, et al. Association of the colorectal CpG island methylator phenotype with molecular features, risk factors, and family history. Cancer Epidemiol Biomarkers Prev, 2015, 24(3): 512-519. |
38. | Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet, 2006, 38(7): 787-793. |
39. | Juo YY, Johnston FM, Zhang DY, et al. Prognostic value of CpG island methylator phenotype among colorectal cancer patients: a systematic review and meta-analysis. Ann Oncol, 2014, 25(12): 2314-2327. |
40. | Cohen SA, Wu C, Yu M, et al. Evaluation of CpG Island Methylator Phenotype as a Biomarker in Colorectal Cancer Treated With Adjuvant Oxaliplatin. Clin Colorectal Cancer, 2016, 15(2): 164-169. |
41. | Roepman P, Schlicker A, Tabernero J, et al. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int J Cancer, 2014, 134(3): 552-562. |
42. | Phipps AI, Limburg PJ, Baron JA, et al. Association between molecular subtypes of colorectal cancer and patient survival. Gastroenterology, 2015, 148(1): 77-87. |
43. | Marisa L, de Reyniès A, Duval A, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med, 2013, 10(5): e1001453. |
44. | Budinska E, Popovici V, Tejpar S, et al. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J Pathol, 2013, 231(1): 63-76. |
45. | Becht E, de Reyniès A, Giraldo NA, et al. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin Cancer Res, 2016, 22(16): 4057-4066. |
46. | Schlicker A, Beran G, Chresta CM, et al. Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Med Genomics, 2012, 5: 66. |
47. | Sadanandam A, Lyssiotis CA, Homicsko K, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med, 2013, 19(5): 619-625. |
48. | Guinney, J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nature Med, 2015, 21: 1350-1356. |
49. | Dienstmann R, Vermeulen L, Guinney J, et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer, 2017, 17(2): 79-92. |
- 1. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
- 2. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin, 2017, 67(1): 7-30.
- 3. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell, 1990, 61(5): 759-767.
- 4. Nelson S, Näthke IS. Interactions and functions of the adenomatous polyposis coli (APC) protein at a glance. J Cell Sci, 2013, 126(Pt 4): 873-877.
- 5. Chen TH, Chang SW, Huang CC, et al. The prognostic significance of APC gene mutation and miR-21 expression in advanced-stage colorectal cancer. Colorectal Dis, 2013, 15(11): 1367-1374.
- 6. Gonzalez-Pons M, Cruz-Correa M. Colorectal cancer biomarkers: where are we now? Biomed Res Int, 2015, 2015: 149014.
- 7. Novellasdemunt L, Foglizzo V, Cuadrado L, et al. USP7 is a tumor-specific WNT activator for APC-mutated colorectal cancer by mediating β-catenin deubiquitination. Cell Rep, 2017, 21(3): 612-627.
- 8. Liang J, Lin C, Hu F, et al. APC polymorphisms and the risk of colorectal neoplasia: a HuGE review and meta-analysis. Am J Epidemiol, 2013, 177(11): 1169-1179.
- 9. Suzuki S, Tanaka T, Poyurovsky MV, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci U S A, 2010, 107(16): 7461-7466.
- 10. Cai X, Qi WX, Wang L, et al. Correlation of multiple proteins with clinic-pathological features and its prognostic significance in colorectal cancer with signet-ring cell component. Eur Rev Med Pharmacol Sci, 2016, 20(16): 3358-3367.
- 11. Muller PA, Vousden KH. p53 mutations in cancer. Nature Cell Biol, 2013, 15: 2-8.
- 12. Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell, 2014, 25(3): 304-317.
- 13. Wang P, Liang J, Wang Z, et al. The prognostic value of p53 positive in colorectal cancer: a retrospective cohort study. Tumour Biol, 2017, 39(5): 1010428317703651.
- 14. Kowalczyk AE, Krazinski BE, Godlewski J, et al. Expression of the EP300, TP53 and BAX genes in colorectal cancer: correlations with clinicopathological parameters and survival. Oncol Rep, 2017, 38(1): 201-210.
- 15. Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol, 2007, 8(12): 970-982.
- 16. Alhopuro P, Alazzouzi H, Sammalkorpi H, et al. SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clin Cancer Res, 2005, 11(17): 6311-6316.
- 17. Losi L, Bouzourene H, Benhattar J. Loss of Smad4 expression predicts liver metastasis in human colorectal cancer. Oncol Rep, 2007, 17(5): 1095-1099.
- 18. Li X, Liu B, Xiao J, et al. Roles of VEGF-C and Smad4 in the lymphangiogenesis, lymphatic metastasis, and prognosis in colon cancer. J Gastrointest Surg, 2011, 15(11): 2001-2010.
- 19. Zhang B, Zhang B, Chen X, et al. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway. Br J Cancer, 2014, 110(4): 946-957.
- 20. Janakiraman M, Vakiani E, Zeng Z, et al. Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res, 2010, 70(14): 5901-5911.
- 21. Hancock JF. Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol, 2003, 4(5): 373-384.
- 22. De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol, 2010, 11(8): 753-762.
- 23. Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med, 2013, 369(11): 1023-1034.
- 24. Loupakis F, Ruzzo A, Cremolini C, et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer, 2009, 101(4): 715-721.
- 25. Rimbert J, Tachon G, Junca A, et al. Association between clinicopathological characteristics and RAS mutation in colorectal cancer. Mod Pathol, 2017, [Epub ahead of print].
- 26. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004, 304(5670): 554.
- 27. Uddin S, Ahmed M, Hussain A, et al. Cyclooxygenase-2 inhibition inhibits PI3K/AKT kinase activity in epithelial ovarian cancer. Int J Cancer, 2010, 126(2): 382-394.
- 28. Paleari L, Puntoni M, Clavarezza M, et al. PIK3CA mutation, aspirin use after diagnosis and survival of colorectal cancer. a systematic review and meta-analysis of epidemiological studies. Clin Oncol (R Coll Radiol), 2016, 28(5): 317-326.
- 29. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology, 2010, 138(6): 2059-2072.
- 30. Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med, 2015, 21(3): 256-262.
- 31. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012, 487(7407): 330-337.
- 32. Kloor M, Staffa L, Ahadova A, et al. Clinical significance of microsatellite instability in colorectal cancer. Langenbecks Arch Surg, 2014, 399(1): 23-31.
- 33. Smyrk TC, Watson P, Kaul K, et al. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer, 2001, 91(12): 2417-2422.
- 34. Dorard C, de Thonel A, Collura A, et al. Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nat Med, 2011, 17(10): 1283-1289.
- 35. Tikidzhieva A, Benner A, Michel S, et al. Microsatellite instability and Beta2-Microglobulin mutations as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer, 2012, 106(6): 1239-1245.
- 36. Weisenberger DJ, Liang G, Lenz HJ. DNA methylation aberrancies delineate clinically distinct subsets of colorectal cancer and provide novel targets for epigenetic therapies. Oncogene, 2017, [Epub ahead of print].
- 37. Weisenberger DJ, Levine AJ, Long TI, et al. Association of the colorectal CpG island methylator phenotype with molecular features, risk factors, and family history. Cancer Epidemiol Biomarkers Prev, 2015, 24(3): 512-519.
- 38. Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet, 2006, 38(7): 787-793.
- 39. Juo YY, Johnston FM, Zhang DY, et al. Prognostic value of CpG island methylator phenotype among colorectal cancer patients: a systematic review and meta-analysis. Ann Oncol, 2014, 25(12): 2314-2327.
- 40. Cohen SA, Wu C, Yu M, et al. Evaluation of CpG Island Methylator Phenotype as a Biomarker in Colorectal Cancer Treated With Adjuvant Oxaliplatin. Clin Colorectal Cancer, 2016, 15(2): 164-169.
- 41. Roepman P, Schlicker A, Tabernero J, et al. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int J Cancer, 2014, 134(3): 552-562.
- 42. Phipps AI, Limburg PJ, Baron JA, et al. Association between molecular subtypes of colorectal cancer and patient survival. Gastroenterology, 2015, 148(1): 77-87.
- 43. Marisa L, de Reyniès A, Duval A, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med, 2013, 10(5): e1001453.
- 44. Budinska E, Popovici V, Tejpar S, et al. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J Pathol, 2013, 231(1): 63-76.
- 45. Becht E, de Reyniès A, Giraldo NA, et al. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin Cancer Res, 2016, 22(16): 4057-4066.
- 46. Schlicker A, Beran G, Chresta CM, et al. Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Med Genomics, 2012, 5: 66.
- 47. Sadanandam A, Lyssiotis CA, Homicsko K, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med, 2013, 19(5): 619-625.
- 48. Guinney, J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nature Med, 2015, 21: 1350-1356.
- 49. Dienstmann R, Vermeulen L, Guinney J, et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer, 2017, 17(2): 79-92.
-
Next Article
局部复发直肠癌的外科综合治疗策略