1. |
Fang S, Fang X. Advances in glucose metabolism research in colorectal cancer. Biomed Rep, 2016, 5(3): 289-295.
|
2. |
Karanikas M, Esebidis A. Increasing incidence of colon cancer in patients <50 years old: a new entity? Ann Transl Med, 2016, 4(9): 164.
|
3. |
Li XB, Gu JD, Zhou QH. Review of aerobic glycolysis and its key enzymes—new targets for lung cancer therapy. Thorac Cancer, 2015, 6(1): 17-24.
|
4. |
Potter M, Newport E, Morten KJ. The Warburg effect: 80 years on. Biochem Soc Trans, 2016, 44(5): 1499-1505.
|
5. |
Otto AM. Warburg effect(s)—a biographical sketch of Otto Warburg and his impacts on tumor metabolism. Cancer Metab, 2016, 4: 5.
|
6. |
魏慧君, 郭丽丽, 李林, 等. Warburg 效应及其对肿瘤转移的影响. 中国肺癌杂志, 2015, 18(3): 179-183.
|
7. |
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab, 2008, 7(1): 11-20.
|
8. |
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009, 324(5930): 1029-1033.
|
9. |
Xing X, Lai M, Wang Y, et al. Overexpression of glucose-regulated protein 78 in colon cancer. Clin Chim Acta, 2006, 364(1-2): 308-315.
|
10. |
Takahashi H, Wang JP, Zheng HC, et al. Overexpression of GRP78 and GRP94 is involved in colorectal carcinogenesis. Histol Histopathol, 2011, 26(6): 663-671.
|
11. |
Huang CY, Kuo WT, Huang YC, et al. Resistance to hypoxia-induced necroptosis is conferred by glycolytic pyruvate scavenging of mitochondrial superoxide in colorectal cancer cells. Cell Death Dis, 2013, 4: e622.
|
12. |
Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 2009, 137(6): 1112-1123.
|
13. |
Song HT, Qin Y, Yao GD, et al. Astrocyte elevated gene-1 mediates glycolysis and tumorigenesis in colorectal carcinoma cells via AMPK signaling. Mediators Inflamm, 2014, 2014: 287381.
|
14. |
Nam SO, Yotsumoto F, Miyata K, et al. Warburg effect regulated by amphiregulin in the development of colorectal cancer. Cancer Med, 2015, 4(4): 575-587.
|
15. |
Zhang LF, Jiang S, Liu MF. MicroRNA regulation and analytical methods in cancer cell metabolism. Cell Mol Life Sci, 2017, 74(16): 2929-2941.
|
16. |
Liu G, Li YI, Gao X. Overexpression of microRNA-133b sensitizes non-small cell lung cancer cells to irradiation through the inhibition of glycolysis. Oncol Lett, 2016, 11(4): 2903-2908.
|
17. |
Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell, 2008, 134(5): 703-707.
|
18. |
Straus DS. TNFα and IL-17 cooperatively stimulate glucose metabolism and growth factor production in human colorectal cancer cells. Mol Cancer, 2013, 12: 78.
|
19. |
Wu ZZ, Chen LS, Zhou R, et al. Metastasis-associated in colon cancer-1 in gastric cancer: Beyond metastasis. World J Gastroenterol, 2016, 22(29): 6629-6637.
|
20. |
Liu J, Pan C, Guo L, et al. A new mechanism of trastuzumab resistance in gastric cancer: MACC1 promotes the Warburg effect via activation of the PI3K/AKT signaling pathway. J Hematol Oncol, 2016, 9(1): 76.
|
21. |
马素珍, 曾震军, 潘晓丽, 等. 糖酵解关键酶在结直肠癌组织中的表达及其临床意义. 肿瘤, 2017, 37(7): 723-731, 741.
|
22. |
Gregersen LH, Jacobsen A, Frankel LB, et al. MicroRNA-143 down-regulates Hexokinase 2 in colon cancer cells. BMC Cancer, 2012, 12: 232.
|
23. |
Tsutsumi S, Fukasawa T, Yamauchi H, et al. Phosphoglucose isomerase enhances colorectal cancer metastasis. Int J Oncol, 2009, 35(5): 1117-1121.
|
24. |
Sun Y, Zhao X, Luo M, et al. The pro-apoptotic role of the regulatory feedback loop between miR-124 and PKM1/HNF4α in colorectal cancer cells. Int J Mol Sci, 2014, 15(3): 4318-4332.
|
25. |
Qiu SL, Xiao ZC, Piao CM, et al. AMP-activated protein kinase α2 protects against liver injury from metastasized tumors via reduced glucose deprivation-induced oxidative stress. J Biol Chem, 2014, 289(13): 9449-9459.
|
26. |
Duffy MJ. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful? Clin Chem, 2001, 47(4): 624-630.
|
27. |
Sánchez-Aragó M, Cuezva JM. The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil. J Transl Med, 2011, 9: 19.
|
28. |
Cruz MD, Ledbetter S, Chowdhury S, et al. Metabolic reprogramming of the premalignant colonic mucosa is an early event in carcinogenesis. Oncotarget, 2017, 8(13): 20543-20557.
|
29. |
Omar HA, Berman-Booty L, Weng JR. Energy restriction: stepping stones towards cancer therapy. Future Oncol, 2012, 8(12): 1503-1506.
|
30. |
Hursting SD, Dunlap SM, Ford NA, et al. Calorie restriction and cancer prevention: a mechanistic perspective. Cancer Metab, 2013, 1: 10.
|
31. |
Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer, 2011, 11(2): 85-95.
|
32. |
Hussain A, Qazi AK, Mupparapu N, et al. Modulation of glycolysis and lipogenesis by novel PI3K selective molecule represses tumor angiogenesis and decreases colorectal cancer growth. Cancer Lett, 2016, 374(2): 250-260.
|
33. |
Chen GQ, Tang CF, Shi XK, et al. Halofuginone inhibits colorectal cancer growth through suppression of Akt/mTORC1 signaling and glucose metabolism. Oncotarget, 2015, 6(27): 24148-24162.
|
34. |
Prakasam G, Iqbal MA, Bamezai RNK, et al. Posttranslational modifications of pyruvate kinase M2: tweaks that benefit cancer. Front Oncol, 2018, 8: 22.
|
35. |
Culverwell AD, Chowdhury FU, Scarsbrook AF. Optimizing the role of FDG PET-CT for potentially operable metastatic colorectal cancer. Abdom Imaging, 2012, 37(6): 1021-1031.
|
36. |
Khan N, Islam MM, Mahmood S, et al. 18F-fluorodeoxyglucose uptake in tumor. Mymensingh Med J, 2011, 20(2): 332-342.
|
37. |
Chopra A, Shan L, Eckelman WC, et al. Molecular Imaging and Contrast Agent Database (MICAD): evolution and progress. Mol Imaging Biol, 2012, 14(1): 4-13.
|
38. |
Cheong JH, Park ES, Liang J, et al. Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin is effective against a broad spectrum of preclinical cancer models. Mol Cancer Ther, 2011, 10(12): 2350-2362.
|
39. |
Ben Sahra I, Laurent K, Giuliano S, et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res, 2010, 70(6): 2465-2475.
|
40. |
Kee HJ, Cheong JH. Tumor bioenergetics: an emerging avenue for cancer metabolism targeted therapy. BMB Rep, 2014, 47(3): 158-166.
|
41. |
Liu J, Wu N, Ma L, et al. Oleanolic acid suppresses aerobic glycolysis in cancer cells by switching pyruvate kinase type M isoforms. PLoS One, 2014, 9(3): e91606.
|
42. |
Xie J, Wu H, Dai C, et al. Beyond Warburg effect—dual metabolic nature of cancer cells. Sci Rep, 2014, 4: 4927.
|
43. |
Gonzalez CD, Alvarez S, Ropolo A, et al. Autophagy, Warburg, and Warburg reverse effects in human cancer. Biomed Res Int, 2014, 2014: 926729.
|
44. |
Chen XS, Li LY, Guan YD, et al. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacol Sin, 2016, 37(8): 1013-1019.
|
45. |
Sounni NE, Cimino J, Blacher S, et al. Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metab, 2014, 20(2): 280-294.
|