1. |
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin, 2015, 65(2): 87-108.
|
2. |
Hui L, Chen Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett, 2015, 368(1): 7-13.
|
3. |
Chen C, Lou T. Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget, 2017, 8(28): 46691-46703.
|
4. |
Hu B, Tang WG, Fan J, et al. Differentially expressed miRNAs in hepatocellular carcinoma cells under hypoxic conditions are associated with transcription and phosphorylation. Oncol Lett, 2018, 15(1): 467-474.
|
5. |
Ju C, Colgan SP, Eltzschig HK. Hypoxia-inducible factors as molecular targets for liver diseases. J Mol Med (Berl), 2016, 94(6): 613-627.
|
6. |
Choi SH, Park JY. Regulation of the hypoxic tumor environment in hepatocellular carcinoma using RNA interference. Cancer Cell Int, 2017, 17: 3.
|
7. |
于天池, 唐波. 缺氧诱导因子 1 和缺氧诱导因子 2 抑制剂靶向治疗癌症的研究进展. 医学综述, 2017, 23(7): 1305-1309, 1315.
|
8. |
Sun YL, Cai JQ, Liu F, et al. Aberrant expression of peroxiredoxin 1 and its clinical implications in liver cancer. World J Gastroenterol, 2015, 21(38): 10840-10852.
|
9. |
Zhan Y, Zheng N, Teng F, et al. MiR-199a/b-5p inhibits hepatocellular carcinoma progression by post-transcriptionally suppressing ROCK1. Oncotarget, 2017, 8(40): 67169-67180.
|
10. |
Liu Z, Tu K, Wang Y, et al. Hypoxia accelerates aggressiveness of hepatocellular carcinoma cells involving oxidative stress, epithelial-mesenchymal transition and non-canonical hedgehog signaling. Cell Physiol Biochem, 2017, 44(5): 1856-1868.
|
11. |
Jiang J, Wang GZ, Wang Y, et al. Hypoxia-induced HMGB1 expression of HCC promotes tumor invasiveness and metastasis via regulating macrophage-derived IL-6. Exp Cell Res, 2018, 367(1): 81-88.
|
12. |
Buschauer S, Koch A, Wiggermann P, et al. Hepatocellular carcinoma cells surviving doxorubicin treatment exhibit increased migratory potential and resistance to doxorubicin re-treatment. Oncol Lett, 2018, 15(4): 4635-4640.
|
13. |
Zhang Y, Lu Y, Zhang C, et al. FSCN-1 increases doxorubicin resistance in hepatocellular carcinoma through promotion of epithelial-mesenchymal transition. Int J Oncol, 2018 Mar 20. doi: 10.3892/ijo.2018.4327.
|
14. |
Dong XF, Liu TQ, Zhi XT, et al. COX-2/PGE2 axis regulates hif2α activity to promote hepatocellular carcinoma hypoxic response and reduce the sensitivity of sorafenib treatment. Clin Cancer Res, 2018, 24(13): 3204-3216.
|
15. |
Guo J, Wang B, Fu Z, et al. Hypoxic microenvironment induces EMT and upgrades stem-like properties of gastric cancer cells. Technol Cancer Res Treat, 2016, 15(1): 60-68.
|
16. |
Tang Y, Wang R, Zhang Y, et al. Co-upregulation of 14-3-3ζ and p-Akt is associated with oncogenesis and recurrence of hepatocellular carcinoma. Cell Physiol Biochem, 2018, 45(3): 1097-1107.
|
17. |
Tang Y, Liu S, Li N, et al. 14-3-3ζ promotes hepatocellular carcinoma venous metastasis by modulating hypoxia-inducible factor-1α. Oncotarget, 2016, 7(13): 15854-15867.
|
18. |
Wang K, Duan C, Zou X, et al. Increased mediator complex subunit 15 expression is associated with poor prognosis in hepatocellular carcinoma. Oncol Lett, 2018, 15(4): 4303-4313.
|
19. |
Lu Y, Sui J, Liu Y, et al. Association between hypoxia-inducible factor-1α gene polymorphisms and risk of chronic hepatitis B and hepatitis B virus-related liver cirrhosis in a Chinese population: a retrospective case-control study. Gene, 2015, 564(1): 96-100.
|
20. |
Semenza GL. The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochim Biophys Acta, 2016, 1863(3): 382-391.
|
21. |
Miao S, Wang SM, Cheng X, et al. Erythropoietin promoted the proliferation of hepatocellular carcinoma through hypoxia induced translocation of its specific receptor. Cancer Cell Int, 2017, 17: 119.
|
22. |
Ibrahim AA, Schmithals C, Kowarz E, et al. Hypoxia causes downregulation of dicer in hepatocellular carcinoma, which is required for upregulation of hypoxia-inducible factor 1α and epithelial-mesenchymal transition. Clin Cancer Res, 2017, 23(14): 3896-3905.
|
23. |
Wang M, Zhao X, Zhu D, et al. HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment. J Exp Clin Cancer Res, 2017, 36(1): 60.
|
24. |
Zhao J, Du F, Shen G, et al. The role of hypoxia-inducible factor-2 in digestive system cancers. Cell Death Dis, 2015, 6: e1600.
|
25. |
Cannito S, Turato C, Paternostro C, et al. Hypoxia up-regulates SERPINB3 through HIF-2α in human liver cancer cells. Oncotarget, 2015, 6(4): 2206-2221.
|
26. |
Shneor D, Folberg R, Pe’er J, et al. Stable knockdown of CREB, HIF-1 and HIF-2 by replication-competent retroviruses abrogates the responses to hypoxia in hepatocellular carcinoma. Cancer Gene Ther, 2017, 24(2): 64-74.
|
27. |
Sun HX, Xu Y, Yang XR, et al. Hypoxia inducible factor 2 alpha inhibits hepatocellular carcinoma growth through the transcription factor dimerization partner 3/ E2F transcription factor 1-dependent apoptotic pathway. Hepatology, 2013, 57(3): 1088-1097.
|
28. |
Yang SL, Liu LP, Niu L, et al. Downregulation and pro-apoptotic effect of hypoxia-inducible factor 2 alpha in hepatocellular carcinoma. Oncotarget, 2016, 7(23): 34571-34581.
|
29. |
Jiang L, Liu QL, Liang QL, et al. Association of PHD3 and HIF2α gene expression with clinicopathological characteristics in human hepatocellular carcinoma. Oncol Lett, 2018, 15(1): 545-551.
|
30. |
Janaszak-Jasiecka A, Bartoszewska S, Kochan K, et al. miR-429 regulates the transition between hypoxia-inducible factor (HIF)1A and HIF3A expression in human endothelial cells. Sci Rep, 2016, 6: 22775.
|
31. |
Maynard MA, Evans AJ, Shi W, et al. Dominant-negative HIF-3 alpha 4 suppresses VHL-null renal cell carcinoma progression. Cell Cycle, 2007, 6(22): 2810-2816.
|
32. |
Payne SJ, Jones L. Influence of the tumor microenvironment on angiogenesis. Future Oncol, 2011, 7(3): 395-408.
|
33. |
刘锋, 李杰. HIF-2α 通过 Wnt/β-catenin 信号通路介导肝细胞肝癌对索拉菲尼耐药机理的实验研究. 山东大学, 2015.
|
34. |
Nauta TD, van den Broek M, Gibbs S, et al. Identification of HIF-2α-regulated genes that play a role in human microvascular endothelial sprouting during prolonged hypoxia in vitro. Angiogenesis, 2017, 20(1): 39-54.
|
35. |
Nahm JH, Rhee H, Kim H, et al. Increased expression of stemness markers and altered tumor stroma in hepatocellular carcinoma under TACE-induced hypoxia: A biopsy and resection matched study. Oncotarget, 2017, 8(59): 99359-99371.
|
36. |
Shi S, Rao Q, Zhang C, et al. Dendritic cells pulsed with exosomes in combination with PD-1 antibody increase the efficacy of sorafenib in hepatocellular carcinoma model. Transl Oncol, 2018, 11(2): 250-258.
|
37. |
Civenni G, Malek A, Albino D, et al. RNAi-mediated silencing of Myc transcription inhibits stem-like cell maintenance and tumorigenicity in prostate cancer. Cancer Res, 2013, 73(22): 6816-6827.
|
38. |
Xu J, Zheng L, Chen J, et al. Increasing AR by HIF-2α inhibitor (PT-2385) overcomes the side-effects of sorafenib by suppressing hepatocellular carcinoma invasion via alteration of pSTAT3, pAKT and pERK signals. Cell Death Dis, 2017, 8(10): e3095.
|
39. |
Tang N, Shi L, Yu Z, et al. Gamabufotalin, a major derivative of bufadienolide, inhibits VEGF-induced angiogenesis by suppressing VEGFR-2 signaling pathway. Oncotarget, 2016, 7(3): 3533-3547.
|
40. |
Maghsoudlou A, Meyer RD, Rezazadeh K, et al. RNF121 inhibits angiogenic growth factor signaling by restricting cell surface expression of VEGFR-2. Traffic, 2016, 17(3): 289-300.
|
41. |
Li YL, Zhang NY, Hu X, et al. Evodiamine induces apoptosis and promotes hepatocellular carcinoma cell death induced by vorinostat via downregulating HIF-1α under hypoxia. Biochem Biophys Res Commun, 2018, 498(3): 481-486.
|
42. |
Prieto-Domínguez N, Méndez-Blanco C, Carbajo-Pescador S, et al. Melatonin enhances sorafenib actions in human hepatocarcinoma cells by inhibiting mTORC1/p70S6K/HIF-1α and hypoxia-mediated mitophagy. Oncotarget, 2017, 8(53): 91402-91414.
|