1. |
陈悦, 刘则渊. 悄然兴起的科学知识图谱. 科学学研究, 2005, 23(2): 149-154.
|
2. |
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能. 科学学研究, 2015, 33(2): 242-253.
|
3. |
Hallet J, Law CH, Cukier M, et al. Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer, 2015, 121(4): 589-97.
|
4. |
中国临床肿瘤学会神经内分泌肿瘤专家委员会. 中国胃肠胰神经内分泌肿瘤专家共识(2016年版). 临床肿瘤学杂志, 2016, 21(10): 927-946.
|
5. |
Klimstra DS. Pathologic classification of neuroendocrine neoplasms. Hematol Oncol Clin North Am, 2016, 30(1): 1-19.
|
6. |
Kleinberg J. Bursty and hierarchical structure in streams. Data Min Knowl Discov, 2003, 7(4): 373-397.
|
7. |
Brugge WR, Lewandrowski K, Lee-Lewandrowski E, et al. Diagnosis of pancreatic cystic neoplasms: a report of the cooperative pancreatic cyst study. Gastroenterology, 2004, 126(5): 1330-1336.
|
8. |
Voss M, Hammel P, Molas G, et al. Value of endoscopic ultrasound guided fine needle aspiration biopsy in the diagnosis of solid pancreatic masses. Gut, 2000, 46(2): 244-249.
|
9. |
Anderson MA, Carpenter S, Thompson NW, et al. Endoscopic ultrasound is highly accurate and directs management in patients with neuroendocrine tumors of the pancreas. Am J Gastroenterol, 2000, 95(9): 2271-2277.
|
10. |
Eloubeidi MA, Jhala D, Chhieng DC, et al. Yield of endoscopic ultrasound-guided fine-needle aspiration biopsy in patients with suspected pancreatic carcinoma. Cancer, 2003, 99(5): 285-292.
|
11. |
Goldberg SN, Mallery S, Gazelle GS, et al. EUS-guided radio-frequency ablation in the pancreas: results in a porcine model. Gastrointest Endosc, 1999, 50(3): 392-401.
|
12. |
Wang D, Zhang GB, Yan L, et al. CT and enhanced CT in diagnosis of gastrointestinal neuroendocrine carcinomas. Abdom Imaging, 2012, 37(5): 738-745.
|
13. |
Chen C, Chen Y, Horowitz M, et al. Towards an explanatory and computational theory of scientific discovery. J Informetrics, 2009, 3(3): 191-209.
|
14. |
Chen C. Science MAPPING: a systematic review of the literature. J Data Inf Sci, 2017, 2(2): 1-40.
|
15. |
Rindi G, Petrone G, Inzani F. The 2010 WHO classification of digestive neuroendocrine neoplasms: a critical appraisal four years after its introduction. Endocr Pathol, 2014, 25(2): 186-192.
|
16. |
张雨晴, 马莉, 贺宇彤, 等. 2001~2010年中国胰腺神经内分泌肿瘤的临床流行病学特征分析. 中国肿瘤, 2016, 25(5): 329-333.
|
17. |
张雨晴, 范金虎. 中国胃肠胰腺神经内分泌肿瘤的十年回顾性临床流行病学研究. 公共卫生, 2016.
|
18. |
O’Regan D, Tait P. Imaging of the pancreas. Br J Hosp Med (Lond), 2006, 67(1): 8-13.
|
19. |
Tamm EP, Bhosale P, Lee JH, et al. State-of-the-art imaging of pancreatic neuroendocrine tumors. Surg Oncol Clin N Am, 2016, 25(2): 375-400.
|
20. |
Lee L, Ito T, Jensen RT. Imaging of pancreatic neuroendocrine tumors: recent advances, current status, and controversies. Expert Rev Anticancer Ther, 2018, 18(9): 837-860.
|
21. |
陈曦, 周光文. 胰腺神经内分泌肿瘤诊治热点探讨. 中国普外基础与临床杂志, 2012, 19(10): 1033-1038.
|
22. |
刘曦娇, 王威亚, 黄子星, 等. 胰腺神经内分泌癌的影像学表现. 中国普外基础与临床杂志, 2012, 19(10): 1126-1129.
|
23. |
Kang KM, Lee JM, Yoon JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology, 2014, 270(2): 444-453.
|
24. |
Concia M, Sprinkart AM, Penner AH, et al. Diffusion-weighted magnetic resonance imaging of the pancreas: diagnostic benefit from an intravoxel incoherent motion model-based 3 b-value analysis. Invest Radiol, 2014, 49(2): 93-100.
|
25. |
Kim B, Lee SS, Sung YS, et al. Intravoxel incoherent motion diffusion-weighted imaging of the pancreas: Characterization of benign and malignant pancreatic pathologies. J Magn Reson Imaging, 2017, 45(1): 260-269.
|
26. |
Park HJ, Jang KM, Song KD, et al. Value of unenhanced MRI with diffusion-weighted imaging for detection of primary small (≤20 mm) solid pancreatic tumours and prediction of pancreatic ductal adenocarcinoma. Clin Radiol, 2017, 72(12): 1076-1084.
|
27. |
Krishna SG, Bhattacharya A, Ross WA, et al. Pretest prediction and diagnosis of metastatic lesions to the pancreas by endoscopic ultrasound-guided fine needle aspiration. J Gastroenterol Hepatol, 2015, 30(10): 1552-1560.
|
28. |
Boy C, Heusner TA, Poeppel TD, et al. 68Ga-DOTATOC PET/CT and somatostatin receptor (sst1-sst5) expression in normal human tissue: correlation of sst2 mRNA and SUVmax. Eur J Nucl Med Mol Imaging, 2011, 38(7): 1224-1236.
|
29. |
Krausz Y, Rubinstein R, Appelbaum L, et al. Ga-68 DOTA-NOC uptake in the pancreas: pathological and physiological patterns. Clin Nucl Med, 2012, 37(1): 57-62.
|
30. |
Haug AR, Cindea-Drimus R, Auernhammer CJ, et al. The role of 68Ga-DOTATATE PET/CT in suspected neuroendocrine tumors. J Nucl Med, 2012, 53(11): 1686-1692.
|
31. |
Sowa-Staszczak A, Pach D, Mikołajczak R, et al. Glucagon-like peptide-1 receptor imaging with[Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 for the detection of insulinoma. Eur J Nucl Med Mol Imaging, 2013, 40(4): 524-531.
|
32. |
Schmid-Tannwald C, Schmid-Tannwald CM, Morelli JN, et al. Comparison of abdominal MRI with diffusion-weighted imaging to 68Ga-DOTATATE PET/CT in detection of neuroendocrine tumors of the pancreas. Eur J Nucl Med Mol Imaging, 2013, 40(6): 897-907.
|
33. |
Sharma P, Mukherjee A, Karunanithi S, et al. Accuracy of 68Ga DOTANOC PET/CT imaging in patients with multiple endocrine neoplasia syndromes. Clin Nucl Med, 2015, 40(7): e351-e356.
|
34. |
Lee I, Paeng JC, Lee SJ, et al. Comparison of diagnostic sensitivity and quantitative indices between68Ga-DOTATOC PET/CT and 111In-pentetreotide SPECT/CT in neuroendocrine tumors: a preliminary report. Nucl Med Mol Imaging, 2015, 49(4): 284-290.
|
35. |
Sharma P, Arora S, Dhull VS, et al. Evaluation of 68Ga-DOTANOC PET/CT imaging in a large exclusive population of pancreatic neuroendocrine tumors. Abdom Imaging, 2015, 40(2): 299-309.
|
36. |
Ruf J, von Wedel F, Furth C, et al. Significance of a single-time-point somatostatin receptor SPECT/multiphase CT protocol in the diagnostic work-up of gastroenteropancreatic neuroendocrine neoplasms. J Nucl Med, 2016, 57(2): 180-185.
|
37. |
Arıcan P, Okudan Tekin B, Naldöken S, et al. A family with von Hippel-Lindau syndrome: the findings of indium-111 somatostatin receptor scintigraphy, iodine-123 metaiodobenzylguanidine scintigraphy and single photon emission computerized tomography. Mol Imaging Radionucl Ther, 2017, 26(1): 38-42.
|
38. |
Tshori S, Bocher M, Yuzefovich B, et al. Diagnostic computed tomography coregistration with In-111-DTPA-octreotide single photon emission tomography/low-dose computed tomography. J Comput Assist Tomogr, 2017, 41(3): 499-504.
|
39. |
Lee NJ, Hruban RH, Fishman EK. Pancreatic neuroendocrine tumor: review of heterogeneous spectrum of CT appearance. Abdom Radiol (NY), 2018, 43(11): 3025-3034.
|
40. |
Choi TW, Kim JH, Yu MH, et al. Pancreatic neuroendocrine tumor: prediction of the tumor grade using CT findings and computerized texture analysis. Acta Radiol, 2018, 59(4): 383-392.
|
41. |
Zhu L, Xue H, Sun H, et al. Insulinoma detection with MDCT: is there a role for whole-pancreas perfusion? AJR Am J Roentgenol, 2017, 208(2): 306-314.
|
42. |
Paiella S, Impellizzeri H, Zanolin E, et al. Comparison of imaging-based and pathological dimensions in pancreatic neuroendocrine tumors. World J Gastroenterol, 2017, 23(17): 3092-3098.
|
43. |
Tatsas AD, Owens CL, Siddiqui MT, et al. Fine-needle aspiration of intrapancreatic accessory spleen: cytomorphologic features and differential diagnosis. Cancer Cytopathol, 2012, 120(4): 261-268.
|
44. |
Atiq M, Bhutani MS, Bektas M, et al. EUS-FNA for pancreatic neuroendocrine tumors: a tertiary cancer center experience. Dig Dis Sci, 2012, 57(3): 791-800.
|
45. |
Mahajan R, Simon EG, Chacko A, et al. Endoscopic ultrasonography in pediatric patients—Experience from a tertiary care center in India. Indian J Gastroenterol, 2016, 35(1): 14-19.
|
46. |
Krishna SG, Bhattacharya A, Li F, et al. Diagnostic differentiation of pancreatic neuroendocrine tumor from other neoplastic solid pancreatic lesions during endoscopic ultrasound-guided fine-needle aspiration. Pancreas, 2016, 45(3): 394-400.
|
47. |
Bergeron JP, Perry KD, Houser PM, et al. Endoscopic ultrasound-guided pancreatic fine-needle aspiration: potential pitfalls in one institution’s experience of 1 212 procedures. Cancer Cytopathol, 2015, 123(2): 98-107.
|