1. |
Paschou SA, Vryonidou A, Goulis DG. Thyroid nodules: α guide to assessment, treatment and follow-up. Maturitas, 2017, 96: 1-9.
|
2. |
Brito JP, Al Nofal A, Montori VM, et al. The impact of subclinical disease and mechanism of detection on the rise in thyroid cancer incidence: A population-based study in Olmsted County, Minnesota during 1935 through 2012. Thyroid, 2015, 25(9): 999-1007.
|
3. |
Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer, 2013, 13(3): 184-199.
|
4. |
Jia Y, Yu Y, Li X, et al. Diagnostic value of B-RAFV600E in difficult-to-diagnose thyroid nodules using fine-needle aspiration: systematic review and meta-analysis. Diagn Cytopathol, 2014, 42(1): 94-101.
|
5. |
Tang KT, Lee CH. BRAF mutation in papillary thyroid carcinoma: pathogenic role and clinical implications. J Chin Med Assoc, 2010, 73(3): 113-128.
|
6. |
Zhong LC, Lu F, Ma F, et al. Ultrasound-guided fine-needle aspiration of thyroid nodules: does the size limit its efficiency? Int J Clin Exp Pathol, 2015, 8(3): 3155-3159.
|
7. |
Cha YJ, Pyo JY, Hong S, et al. Thyroid fine-needle aspiration cytology practice in Korea. J Pathol Transl Med, 2017, 51(6): 521-527.
|
8. |
于波洋, 杨盼, 马步云, 等. 甲状腺乳头状癌 BRAF 基因表达及侵袭性研究. 中国普外基础与临床杂志, 2015, 22(7): 795-798.
|
9. |
田文, 姚京. 甲状腺结节的临床评估. 中国普外基础与临床杂志, 2014, 21(9): 1066-1069.
|
10. |
Fuller MY, Mody D, Hull A, et al. Next-generation sequencing identifies gene mutations that are predictive of malignancy in residual needle rinses collected from fine-needle aspirations of thyroid nodules. Arch Pathol Lab Med, 2018, 142(2): 178-183.
|
11. |
Decaussin-Petrucci M, Descotes F, Depaepe L, et al. Molecular testing of BRAF, RAS and TERT on thyroid FNAs with indeterminate cytology improves diagnostic accuracy. Cytopathology, 2017, 28(6): 482-487.
|
12. |
Wang Z, Chen JQ, Liu JL, et al. Clinical impact of BRAF mutation on the diagnosis and prognosis of papillary thyroid carcinoma: a systematic review and meta-analysis. Eur J Clin Invest, 2016, 46(2): 146-157.
|
13. |
Fraser S, Go C, Aniss A, et al. BRAFV600E mutation is associated with decreased disease-free survival in papillary thyroid cancer. World J Surg, 2016, 40(7): 1618-1624.
|
14. |
Su X, Jiang X, Xu X, et al. Diagnostic value of BRAFV600E-mutation analysis in fine-needle aspiration of thyroid nodules: a meta-analysis. Onco Targets Ther, 2016, 9: 2495-2509.
|
15. |
Jinih M, Foley N, Osho O, et al. BRAFV600E mutation as a predictor of thyroid malignancy in indeterminate nodules: A systematic review and meta-analysis. Eur J Surg Oncol, 2017, 43(7): 1219-1227.
|
16. |
杨敬, 严淑萍, 龚艳萍, 等. BRAFV600E 基因突变与中国甲状腺乳头状癌患者临床病理学特征间关系的 Meta 分析. 华西医学, 2016, 31(3): 467-479.
|
17. |
Trimboli P, Treglia G, Condorelli E, et al. BRAF-mutated carcinomas among thyroid nodules with prior indeterminate FNA report: a systematic review and meta-analysis. Clin Endocrinol (Oxf), 2016, 84(3): 315-320.
|
18. |
Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA, 2013, 309(14): 1493-1501.
|
19. |
Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev, 2007, 28(7): 742-762.
|
20. |
Lee SE, Hwang TS, Choi YL, et al. Molecular profiling of papillary thyroid carcinoma in Korea with a high prevalence of BRAF thyroid, 2017, 27(6): 802-810.
|
21. |
Chen D, Qi W, Zhang P, et al. Investigation of BRAF V600E detection approaches in papillary thyroid carcinoma. Pathol Res Pract, 2018, 214(2): 303-307.
|
22. |
Kim JK, Seong CY, Bae IE, et al. Comparison of immunohistochemistry and direct sequencing methods for identification of the BRAFV600E mutation in papillary thyroid carcinoma. Ann Surg Oncol, 2018, 25(6): 1775-1781.
|
23. |
Collet JF, Lacave R, Hugonin S, et al. BRAF V600E detection in cytological thyroid samples: A key component of the decision tree for surgical treatment of papillary thyroid carcinoma. Head Neck, 2016, 38(7): 1017-1021.
|
24. |
Zhang B, Liu S, Zhang Z, et al. Analysis of BRAFV600E mutation and DNA methylation improves the diagnostics of thyroid fine needle aspiration biopsies. Diagn Pathol, 2014, 9: 45.
|
25. |
Krane JF, Cibas ES, Alexander EK, et al. Molecular analysis of residual ThinPrep material from thyroid FNAs increases diagnostic sensitivity. Cancer Cytopathol, 2015, 123(6): 356-361.
|
26. |
Hassell LA, Gillies EM, Dunn ST. Cytologic and molecular diagnosis of thyroid cancers: is it time for routine reflex testing? Cancer Cytopathol, 2012, 120(1): 7-17.
|
27. |
Pongsapich W, Chongkolwatana C, Poungvarin N, et al. BRAF mutation in cytologically indeterminate thyroid nodules: after reclassification of a variant thyroid carcinoma. Onco Targets Ther, 2019, 12: 1465-1473.
|
28. |
章美武, 张燕, 范晓翔, 等. 甲状腺细针穿刺细胞学联合 BRAF 基因检测的诊断价值. 介入放射学杂志, 2017, 26(7): 622-626.
|
29. |
Kim DS, Kim DW, Heo YJ, et al. Utility of including BRAF mutation analysis with ultrasonographic and cytological diagnoses in ultrasonography-guided fine-needle aspiration of thyroid nodules. PLoS One, 2018, 13(8): e0202687.
|
30. |
Cibas ES, Ali SZ. The 2017 Bethesda System for reporting thyroid cytopathology. Thyroid, 2017, 27(11): 1341-1346.
|
31. |
Nikiforov YE, Ohori NP, Hodak SP, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab, 2011, 96(11): 3390-3397.
|
32. |
Paek SH, Kim BS, Kang KH, et al. False-negative BRAF V600E mutation results on fine-needle aspiration cytology of papillary thyroid carcinoma. World J Surg Oncol, 2017, 15(1): 202.
|
33. |
de Koster EJ, de Geus-Oei LF, Dekkers OM, et al. Diagnostic utility of molecular and imaging biomarkers in cytological indeterminate thyroid nodules. Endocr Rev, 2018, 39(2): 154-191.
|
34. |
Park JY, Kim WY, Hwang TS, et al. BRAF and RAS mutations in follicular variants of papillary thyroid carcinoma. Endocr Pathol, 2013, 24(2): 69-76.
|
35. |
An JH, Song KH, Kim SK, et al. RAS mutations in indeterminate thyroid nodules are predictive of the follicular variant of papillary thyroid carcinoma. Clin Endocrinol (Oxf), 2015, 82(5): 760-766.
|
36. |
Nikiforov YE. Role of molecular markers in thyroid nodule management: then and now. Endocr Pract, 2017, 23(8): 979-988.
|
37. |
Brown AE, Lim KS, Corpus G, et al. Detection of BRAF mutation in the cytocentrifugation supernatant fluid from fine-needle aspiration of thyroid lesions may enhance the diagnostic yield. Cytojournal, 2017, 14: 4.
|