1. |
Bray F, Ferlay J, Soerjomataram I, <italic>et al</italic>. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
Yang JD, Hainaut P, Gores GJ, <italic>et al</italic>. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604.
|
3. |
Villanueva A. Hepatocellular carcinoma. N Engl J Med, 2019, 380(15): 1450-1462.
|
4. |
Ringelhan M, Pfister D, O'Connor T, <italic>et al</italic>. The immunology of hepatocellular carcinoma. Nat Immunol, 2018, 19(3): 222-232.
|
5. |
Chávez-Galán L, Olleros ML, Vesin D, <italic>et al</italic>. Much more than M1 and M2 macrophages, there are also CD169<sup>+</sup> and TCR<sup>+</sup> macrophages. Front Immunol, 2015, 6: 263.
|
6. |
Degroote H, Van Dierendonck A, Geerts A, <italic>et al</italic>. Preclinical and clinical therapeutic strategies affecting tumor-associated macrophages in hepatocellular carcinoma. J Immunol Res, 2018, 2018: 7819520.
|
7. |
Fu XT, Dai Z, Song K, <italic>et al</italic>. Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int J Oncol, 2015, 46(2): 587-596.
|
8. |
Rai V, Abdo J, Alsuwaidan AN, <italic>et al</italic>. Cellular and molecular targets for the immunotherapy of hepatocellular carcinoma. Mol Cell Biochem, 2018, 437(1-2): 13-36.
|
9. |
Syn NL, Teng M, Mok T, <italic>et al</italic>. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol, 2017, 18(12): e731-e741.
|
10. |
El-Khoueiry AB, Sangro B, Yau T, <italic>et al</italic>. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet, 2017, 389(10088): 2492-2502.
|
11. |
Mossanen Jana C, Marlene K, Alexander W, <italic>et al</italic>. CXCR6 inhibits hepatocarcinogenesis by promoting natural killer T- and CD4<sup>+</sup> T-cell-dependent control of senescence. Gastroenterology, 2019, 156(6): 1877-1889. e4.
|
12. |
Brown ZJ, Fu Q, Ma C, <italic>et al</italic>. Carnitine palmitoyltransferase gene upregulation by linoleic acid induces CD4<sup>+</sup> T cell apoptosis promoting HCC development. Cell Death Dis, 2018, 9(6): 620.
|
13. |
Zhang H, Jiang Z, Zhang L. Dual effect of T helper cell 17(Th17) and regulatory T cell (Treg) in liver pathological process: From occurrence to end stage of disease. Int Immunopharmacol, 2019, 69: 50-59.
|
14. |
Kang TW, Yevsa T, Woller N, <italic>et al</italic>. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature, 2011, 479(7374): 547-551.
|
15. |
Eggert T, Wolter K, Ji J, <italic>et al</italic>. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell, 2016, 30(4): 533-547.
|
16. |
Hefetz-Sela S, Stein I, Klieger Y, <italic>et al</italic>. Acquisition of an immunosuppressive protumorigenic macrophage phenotype depending on c-Jun phosphorylation. Proc Natl Acad Sci U S A, 2014, 111(49): 17582-17587.
|
17. |
Liu YT, Tseng TC, Soong RS, <italic>et al</italic>. A novel spontaneous hepatocellular carcinoma mouse model for studying T-cell exhaustion in the tumor microenvironment. J Immunother Cancer, 2018, 6(1): 144.
|
18. |
Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol, 2015, 15(8): 486-499.
|
19. |
Luca C, Takanori K. Targeting tumor-associated macrophages as a potential strategy to enhance the response to immune checkpoint inhibitors. Front Cell Dev Biol, 2018, 6: 38.
|
20. |
Ma J, Zheng B, Goswami S, <italic>et al</italic>. PD1Hi CD8<sup>+</sup> T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. J Immunother Cancer, 2019, 7(1): 331.
|
21. |
Liu J, Fan L, Yu H, <italic>et al</italic>. Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology, 2019, 70(1): 241-258.
|
22. |
Li X, Yao W, Yuan Y, <italic>et al</italic>. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut, 2017, 66(1): 157-167.
|
23. |
Yao W, Ba Q, Li X, <italic>et al</italic>. A natural CCR2 antagonist relieves tumor-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBioMedicine, 2017, 22: 58-67.
|
24. |
Wu Q, Zhou W, Yin S, <italic>et al</italic>. Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed Cell death ligand 1 resistance in liver cancer. Hepatology, 2019, 70(1): 198-214.
|
25. |
Li H, Wu K, Tao K, <italic>et al</italic>. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology, 2012, 56(4): 1342-1351.
|
26. |
Wei Y, Lao XM, Xiao X, <italic>et al</italic>. Plasma cell polarization to the immunoglobulin G phenotype in hepatocellular carcinomas involves epigenetic alterations and promotes hepatoma progression in mice. Gastroenterology, 2019, 156(6): 1890-1904. e16.
|
27. |
Wang C, Singer M, Anderson AC. Molecular dissection of CD8<sup>+</sup> T-cell dysfunction. Trends Immunol, 2017, 38(8): 567-576.
|
28. |
Zou W, Wolchok JD, Chen L. PD-L1(B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med, 2016, 8(328): 328rv4.
|
29. |
De Nardo DG, Barreto JB, Andreu P, <italic>et al</italic>. CD4<sup>+</sup> T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 2009, 16(2): 91-102.
|
30. |
Ao JY, Zhu XD, Chai ZT, <italic>et al</italic>. Colony-stimulating factor 1 receptor blockade inhibits tumor growth by altering the polarization of tumor-associated macrophages in hepatocellular carcinoma. Mol Cancer Ther, 2017, 16(8): 1544-1554.
|