1. |
Tian L, Zhao ZF, Xie L, et al. Taurine up-regulated 1 accelerates tumorigenesis of colon cancer by regulating miR-26a-5p/MMP14/p38 MAPK/Hsp27 axis in vitro and in vivo. Life Sci, 2019, 239: 117035.
|
2. |
Song Q, Zheng C, Jia J, et al. A probiotic spore-based oral autonomous nanoparticles generator for cancer therapy. Adv Mater, 2019, 31(43): e1903793.
|
3. |
Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol, 2019, 20(7): 436-450.
|
4. |
Kedia-Mehta N, Finlay DK. Competition for nutrients and its role in controlling immune responses. Nat Commun, 2019, 10(1): 2123.
|
5. |
Verschueren KHG, Blanchet C, Felix J, et al. Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature, 2019, 568(7753): 571-575.
|
6. |
Wei J, Leit S, Kuai J, et al. An allosteric mechanism for potent inhibition of human ATP-citrate lyase. Nature, 2019, 568(7753): 566-570.
|
7. |
Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res, 2012, 72(15): 3709-3714.
|
8. |
Zhou J, Qu G, Zhang G, et al. Glycerol kinase 5 confers gefitinib resistance through SREBP1/SCD1 signaling pathway. J Exp Clin Cancer Res, 2019, 38(1): 96.
|
9. |
Ference BA, Ray KK, Catapano AL, et al. Mendelian randomization study of ACLY and cardiovascular disease. N Engl J Med, 2019, 380(11): 1033-1042.
|
10. |
Kumari R, Deshmukh RS, Das S. Caspase-10 inhibits ATP-citrate lyase-mediated metabolic and epigenetic reprogramming to suppress tumorigenesis. Nat Commun, 2019, 10(1): 4255.
|
11. |
Wen J, Min X, Shen M, et al. ACLY facilitates colon cancer cell metastasis by CTNNB1. J Exp Clin Cancer Res, 2019, 38(1): 401.
|
12. |
Wang J, Ye W, Yan X, et al. Low expression of ACLY associates with favorable prognosis in acute myeloid leukemia. J Transl Med, 2019, 17(1): 149.
|
13. |
Bauer DE, Hatzivassiliou G, Zhao F, et al. ATP citrate lyase is an important component of cell growth and transformation. Oncogene, 2005, 24(41): 6314-6322.
|
14. |
Clarke A. Energy flow in growth and production. Trends Ecol Evol, 2019, 34(6): 502-509.
|
15. |
Guo D, Bell EH, Mischel P, et al. Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr Pharm Des, 2014, 20(15): 2619-2626.
|
16. |
Lu J. The Warburg metabolism fuels tumor metastasis. Cancer Metastasis Rev, 2019, 38(1-2): 157-164.
|
17. |
Comerford SA, Huang Z, Du X, et al. Acetate dependence of tumors. Cell, 2014, 159(7): 1591-1602.
|
18. |
Xiang AS, Kingwell BA. Rethinking good cholesterol: a clinicians’ guide to understanding HDL. Lancet Diabetes Endocrinol, 2019, 7(7): 575-582.
|
19. |
Dutta A, Sharma-Walia N. Curbing lipids: impacts on cancer and viral infection. Int J Mol Sci, 2019, 20(3): 644.
|
20. |
Lee JV, Berry CT, Kim K, et al. Acetyl-CoA promotes glioblastoma cell adhesion and migration through Ca2+-NFAT signaling. Genes Dev, 2018, 32(7-8): 497-511.
|
21. |
Karlstaedt A, Zhang X, Vitrac H, et al. Oncometabolite d-2-hydroxyglutarate impairs α-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc Natl Acad Sci U S A, 2016, 113(37): 10436-10441.
|
22. |
Lin R, Tao R, Gao X, et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell, 2013, 51(4): 506-518.
|
23. |
Lucenay KS, Doostan I, Karakas C, et al. Cyclin E associates with the lipogenic enzyme ATP-citrate lyase to enable malignant growth of breast cancer cells. Cancer Res, 2016, 76(8): 2406-2418.
|
24. |
Zaidi N, Royaux I, Swinnen JV, et al. ATP citrate lyase knockdown induces growth arrest and apoptosis through different cell- and environment-dependent mechanisms. Mol Cancer Ther, 2012, 11(9): 1925-1935.
|