1. |
Bridgewater J, Galle PR, Khan SA, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol, 2014, 60(6): 1268-1289.
|
2. |
Wistuba II, Gazdar AF. Gallbladder cancer: lessons from a rare tumour. Nat Rev Cancer, 2004, 4(9): 695-706.
|
3. |
Lee AJ, Chun YS. Intrahepatic cholangiocarcinoma: the AJCC/UICC 8th edition updates. Chin Clin Oncol, 2018, 7(5): 52.
|
4. |
Zhang H, Yang T, Wu M, et al. Intrahepatic cholangiocarcinoma: Epidemiology, risk factors, diagnosis and surgical management. Cancer Lett, 2016, 379(2): 198-205.
|
5. |
Chun YS, Javle M. Systemic and adjuvant therapies for intrahepatic cholangiocarcinoma. Cancer Control, 2017, 24(3): 1145164505.
|
6. |
Spolverato G, Vitale A, Cucchetti A, et al. Can hepatic resection provide a long-term cure for patients with intrahepatic cholangiocarcinoma? Cancer, 2015, 121(22): 3998-4006.
|
7. |
Weber SM, Ribero D, O’Reilly EM, et al. Intrahepatic cholangiocarcinoma: expert consensus statement. HPB (Oxford), 2015, 17(8): 669-680.
|
8. |
Malka D, Cervera P, Foulon S, et al. Gemcitabine and oxaliplatin with or without cetuximab in advanced biliary-tract cancer (BINGO): a randomised, open-label, non-comparative phase 2 trial. Lancet Oncol, 2014, 15(8): 819-828.
|
9. |
Ercolani G, Vetrone G, Grazi GL, et al. Intrahepatic cholangiocarcinoma: primary liver resection and aggressive multimodal treatment of recurrence significantly prolong survival. Ann Surg, 2010, 252(1): 107-114.
|
10. |
Kim YH, Hong EK, Kong SY, et al. Two classes of intrahepatic cholangiocarcinoma defined by relative abundance of mutations and copy number alterations. Oncotarget, 2016, 7(17): 23825-23836.
|
11. |
Zhou D, Gao B, Yang Q, et al. Integrative analysis of ceRNA network reveals functional lncRNAs in intrahepatic cholangiocarcinoma. Biomed Res Int, 2019, 2019: 2601271.
|
12. |
Liu ZH, Lian BF, Dong QZ, et al. Whole-exome mutational and transcriptional landscapes of combined hepatocellular cholangiocarcinoma and intrahepatic cholangiocarcinoma reveal molecular diversity. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(6 Pt B): 2360-2368.
|
13. |
Jain A, Javle M. Molecular profiling of biliary tract cancer: a target rich disease. J Gastrointest Oncol, 2016, 7(5): 797-803.
|
14. |
Jain A, Kwong L N, Javle M. Genomic profiling of biliary tract cancers and implications for clinical practice. Curr Treat Options Oncol, 2016, 17(11): 58.
|
15. |
Churi CR, Shroff R, Wang Y, et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS One, 2014, 9(12): e115383.
|
16. |
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28(1): 27-30.
|
17. |
von Mering C, Huynen M, Jaeggi D, et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res, 2003, 31(1): 258-261.
|
18. |
Yu H, Wang H, Dong W, et al. The diagnostic and prognostic value of UBE2T in intrahepatic cholangiocarcinoma. PeerJ, 2020, 8: e8454.
|
19. |
Sanmai S, Proungvitaya T, Limpaiboon T, et al. Serum pyruvate dehydrogenase kinase as a prognostic marker for cholangiocarcinoma. Oncol Lett, 2019, 17(6): 5275-5282.
|
20. |
Meng LQ. Essential role of polymorphism of Gab1, EGFR, and EGF for the susceptibility of biliary tract cancer. Tumour Biol, 2014, 35(12): 12497-12508.
|
21. |
Iwaki J, Kikuchi K, Mizuguchi Y, et al. MiR-376c down-regulation accelerates EGF-dependent migration by targeting GRB2 in the HuCCT1 human intrahepatic cholangiocarcinoma cell line. PLoS One, 2013, 8(7): e69496.
|
22. |
Simbolo M, Vicentini C, Ruzzenente A, et al. Genetic alterations analysis in prognostic stratified groups identified TP53 and ARID1A as poor clinical performance markers in intrahepatic cholangiocarcinoma. Sci Rep, 2018, 8(1): 7119.
|