1. |
Callaway E. Contamination hits cell work. Nature, 2014, 511(7511): 518.
|
2. |
American Type Culture Collection Standards Development Organization Workgroup ASN-0002. Cell line misidentification: the beginning of the end. Nat Rev Cancer, 2010, 10(6): 441-448.
|
3. |
Greshock J, Bachman KE, Degenhardt YY, et al. Molecular target class is predictive of in vitro response profile. Cancer Res, 2010, 70(9): 3677-3686.
|
4. |
Lee MS, Helms TL, Feng N, et al. Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo in KRAS mutant colorectal cancer models. Oncotarget, 2016, 7(26): 39595-39608.
|
5. |
Kang XJ, Wang HY, Peng HG, et al. Codelivery of dihydro-artemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin, 2017, 38(6): 885-896.
|
6. |
Bian Z, Zhang J, Li M, et al. LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res, 2018, 24(19): 4808-4819.
|
7. |
Ye F, Chen C, Qin J, et al. Genetic profiling reveals an alarming rate of cross-contamination among human cell lines used in China. FASEB J, 2015, 29(10): 4268-4272.
|
8. |
Kopetz S, Lemos R, Powis G. The promise of patient-derived xenografts: the best laid plans of mice and men. Clin Cancer Res, 2012, 18(19): 5160-5162.
|
9. |
Inoue A, Deem AK, Kopetz S, et al. Current and future horizons of patient-derived xenograft models in colorectal cancer translational research. Cancers (Basel), 2019, 11(9): 1321.
|
10. |
Kuwata T, Yanagihara K, Iino Y, et al. Establishment of novel gastric cancer patient-derived xenografts and cell lines: pathological comparison between primary tumor, patient-derived, and cell-line derived xenografts. Cells, 2019, 8(6): 585.
|
11. |
王振强, 朱正纲. PDX 模型在肿瘤转化医学中的应用与发展. 中华胃肠外科杂志, 2017, 20(5): 596-600.
|
12. |
Zhu Q, Jin Z, Wu W, et al. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer. PLoS One, 2014, 9(6): e90849.
|
13. |
Angelou A, Andreatos N, Antoniou E, et al. A novel modification of the AOM/DSS model for inducing intestinal adenomas in mice. Anticancer Res, 2018, 38(6): 3467-3470.
|
14. |
Wirtz S, Neufert C, Weigmann B, et al. Chemically induced mouse models of intestinal inflammation. Nat Protoc, 2007, 2(3): 541-546.
|
15. |
Snider AJ, Bialkowska AB, Ghaleb AM, et al. Murine model for colitis-associated cancer of the colon. Methods Mol Biol, 2016, 1438: 245-254.
|
16. |
Ke Z, Wang C, Wu T, et al. PAR2 deficiency enhances myeloid cell-mediated immunosuppression and promotes colitis-associated tumorigenesis. Cancer Lett, 2020, 469: 437-446.
|
17. |
Wang CZ, Huang WH, Zhang CF, et al. Role of intestinal microbiome in American ginseng-mediated colon cancer prevention in high fat diet-fed AOM/DSS mice [corrected]. Clin Transl Oncol, 2018, 20(3): 302-312.
|
18. |
Yassin M, Sadowska Z, Djurhuus D, et al. Upregulation of PD-1 follows tumour development in the AOM/DSS model of inflammation-induced colorectal cancer in mice. Immunology, 2019, 158(1): 35-46.
|
19. |
Betzler AM, Kochall S, Blickensdörfer L, et al. A genetically engineered mouse model of sporadic colorectal cancer. J Vis Exp, 2017, 125: 55952.
|
20. |
Lin YC, Lin YC, Chen CJ. Cancers complicating inflammatory bowel disease. N Engl J Med, 2015, 373(2): 194-195.
|
21. |
Näthke IS. The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. Annu Rev Cell Dev Biol, 2004, 20: 337-366.
|
22. |
Su LK, Kinzler KW, Vogelstein B, et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science, 1992, 256(5057): 668-670.
|
23. |
Yamada Y, Mori H. Multistep carcinogenesis of the colon in Apc(Min/+) mouse. Cancer Sci, 2007, 98(1): 6-10.
|
24. |
Taketo MM, Edelmann W. Mouse models of colon cancer. Gastroenterology, 2009, 136(3): 780-798.
|
25. |
Fodde R. The APC gene in colorectal cancer. Eur J Cancer, 2002, 38(7): 867-871.
|
26. |
Liu T, Guo Z, Song X, et al. High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2 macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence. J Cell Mol Med, 2020, 24(4): 2648-2662.
|
27. |
Adachi S, Hamoya T, Fujii G, et al. Theracurmin inhibits intestinal polyp development in Apc-mutant mice by inhibiting inflammation-related factors. Cancer Sci, 2020, 111(4): 1367-1374.
|
28. |
Zhang Q, Bi J, Zheng X, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol, 2018, 19(7): 723-732.
|
29. |
Park SM, Jeon SK, Kim OH, et al. Anti-tumor effects of the ethanolic extract of Trichosanthes kirilowii seeds in colorectal cancer. Chin Med, 2019, 14: 43.
|
30. |
Schroeder A, Heller DA, Winslow MM, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer, 2011, 12(1): 39-50.
|
31. |
Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer, 2009, 9(4): 274-284.
|
32. |
Mittal VK, Bhullar JS, Jayant K. Animal models of human colorectal cancer: Current status, uses and limitations. World J Gastroenterol, 2015, 21(41): 11854-11861.
|
33. |
Okamoto K, Ishiguro T, Midorikawa Y, et al. MiR-493 induction during carcinogenesis blocks metastatic settlement of colon cancer cells in liver. EMBO J, 2012, 31(7): 1752-1763.
|
34. |
Brouquet A, Vauthey JN, Contreras CM, et al. Improved survival after resection of liver and lung colorectal metastases compared with liver-only metastases: a study of 112 patients with limited lung metastatic disease. J Am Coll Surg, 2011, 213(1): 62-69.
|
35. |
Wu X, Li R, Song Q, et al. JMJD2C promotes colorectal cancer metastasis via regulating histone methylation of MALAT1 promoter and enhancing β-catenin signaling pathway. J Exp Clin Cancer Res, 2019, 38(1): 435.
|
36. |
Razavi R, Harrison LE. Thermal sensitization using induced oxidative stress decreases tumor growth in an in vivo model of hyperthermic intraperitoneal perfusion. Ann Surg Oncol, 2010, 17(1): 304-311.
|
37. |
刘福英. 肿瘤骨转移动物模型研究进展. 中国比较医学杂志, 2010, 20(7): 1-4.
|
38. |
刘希, 杨文生, 康政宇, 等. 可视化人结直肠癌细胞裸鼠直肠原位移植淋巴转移模型的建立. 中国普外基础与临床杂志, 2020, 27(6): 679-684.
|
39. |
Peuker K, Muff S, Wang J, et al. Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat Med, 2016, 22(5): 506-515.
|
40. |
黄晓东, 郑勇斌, 杨玉杰, 等. ApcloxP/loxP+KrasLSL-G12D/-转基因小鼠模拟人散发性结直肠癌. 中华实验外科杂志, 2019, 36(10): 1791-1794.
|