1. |
Liu S, Zou H, Wang Y, et al. miR-155-5p is negatively associated with acute pancreatitis and inversely regulates pancreatic acinar cell progression by targeting Rela and Traf3. Cell Physiol Biochem, 2018, 51(4): 1584-1599.
|
2. |
Lee PJ, Papachristou GI. New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 479-496.
|
3. |
Paul J. Recent advances in diagnosis and severity assessment of acute pancreatitis. Prague Med Rep, 2020, 121(2): 65-86.
|
4. |
Machicado JD, Papachristou GI. Pharmacologic management and prevention of acute pancreatitis. Curr Opin Gastroenterol, 2019, 35(5): 460-467.
|
5. |
Zhou B, Yang H, Yang C, et al. Translation of noncoding RNAs and cancer. Cancer Lett, 2021, 497: 89-99.
|
6. |
张洋, 郭海, 马莉, 等. 长链非编码 RNA MALAT1 吸附微小 RNA-124 调控 MSCs 成骨分化的实验研究. 中国修复重建外科杂志, 2020, 34(2): 240-245.
|
7. |
侯婉婷, 唐秋琳, 毕锋. 肾透明细胞癌中 lncRNA 和 miRNA 差异表达及相关 ceRNA 调控网络的分析研究. 生物医学工程学杂志, 2019, 36(2): 267-273.
|
8. |
陈舒泽, 于正桐, 王梓鸿, 等. 长链非编码 RNA 中 INK4 基因座中反义非编码 RNA 在糖尿病视网膜病变中的研究现状. 中华眼底病杂志, 2020, 36(1): 78-81.
|
9. |
Lankisch PG, Apte M, Banks PA. Acute pancreatitis. Lancet, 2015, 386(9988): 85-96.
|
10. |
Cao Z, Qiu J, Yang G, et al. MiR-135a biogenesis and regulation in malignancy: a new hope for cancer research and therapy. Cancer Biol Med, 2020, 17(3): 569-582.
|
11. |
Wang J, Yang J, Zhang H, et al. Effects of miR-135a-5p and miR-141 on proliferation, invasion and apoptosis of colorectal cancer SW620 cells. Oncol Lett, 2020, 20(1): 914-920.
|
12. |
Tang Y, Cao G, Zhao G, et al. LncRNA differentiation antagonizing non-protein coding RNA promotes proliferation and invasion through regulating miR-135a/NLRP37 axis in pancreatic cancer. Invest New Drugs, 2020, 38(3): 714-721.
|
13. |
Pan J, Xu X, Wang G. lncRNA ZFAS1 is involved in the proliferation, invasion and metastasis of prostate cancer cells through competitively binding to miR-135a-5p. Cancer Manag Res, 2020, 12: 1135-1149.
|
14. |
Zhao Y, Sun X, Zhu K, et al. miR-135a inhibits malignant proliferation and diffusion of non-small cell lung cancer cells by down-regulating ROCK1 protein. Biosci Rep, 2020, 40(6): BSR20201276.
|
15. |
Qin T, Fu Q, Pan YF, et al. Expressions of miR-22 and miR-135a in acute pancreatitis. J Huazhong Univ Sci Technolog Med Sci, 2014, 34(2): 225-233.
|
16. |
Zhang KK, Yu SS, Li GY, et al. miR-135a deficiency inhibits the AR42J cells damage in cerulein-induced acute pancreatitis through targeting FAM129A. Pflugers Arch, 2019, 471(11-12): 1519-1527.
|
17. |
张禾, 张玉龙, 邹凌琳. miR-21 在乳腺癌中的研究进展. 生物医学工程学杂志, 2015, 32(3): 712-716.
|
18. |
彭建强, 黄年盛, 黄胜, 等. H2O2 下调 miR-21 对 MC3T3-E1 细胞成骨分化影响的研究. 中国修复重建外科杂志, 2018, 32(3): 276-284.
|
19. |
Zhu Y, Tang H, Zhang L, et al. Suppression of miR-21-3p enhances TRAIL-mediated apoptosis in liver cancer stem cells by suppressing the PI3K/Akt/Bad cascade via regulating PTEN. Cancer Manag Res, 2019, 11: 955-968.
|
20. |
Ge X, Li W, Huang S, et al. Increased miR-21-3p in injured brain microvascular endothelial cells after traumatic brain injury aggravates blood-brain barrier damage by promoting cellular apoptosis and inflammation through targeting MAT2B. J Neurotrauma, 2019, 36(8): 1291-1305.
|
21. |
Loboda A, Sobczak M, Jozkowicz A, et al. TGF-β1/Smads and miR-21 in renal fibrosis and inflammation. Mediators Inflamm, 2016, 2016: 8319283.
|
22. |
Degueurce G, D’Errico I, Pich C, et al. Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation. EMBO Mol Med, 2016, 8(8): 919-936.
|
23. |
Shi B, Wang Y, Zhao R, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit+ cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis. PLoS One, 2018, 13(2): e0191616.
|
24. |
Vychytilova-Faltejskova P, Kiss I, Klusova S, et al. MiR-21, miR-34a, miR-198 and miR-217 as diagnostic and prognostic biomarkers for chronic pancreatitis and pancreatic ductal adenocarcinoma. Diagn Pathol, 2015, 10: 38.
|
25. |
Dixit AK, Sarver AE, Yuan Z, et al. Comprehensive analysis of microRNA signature of mouse pancreatic acini: overexpression of miR-21-3p in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol, 2016, 311(5): G974-G980.
|
26. |
Li X, Lin Z, Wang L, et al. RNA-seq analyses of the role of miR-21 in acute pancreatitis. Cell Physiol Biochem, 2018, 51(5): 2198-2211.
|
27. |
Wang T, Jiang L, Wei X, et al. MiR-21-3p aggravates injury in rats with acute hemorrhagic necrotizing pancreatitis by activating TRP signaling pathway. Biomed Pharmacother, 2018, 107: 1744-1753.
|
28. |
吴开李, 王连臣, 符国宏, 等. 急性胰腺炎患者血浆 miR-21-3p 和 miR-551-5p 表达水平及临床意义. 中华危重病急救医学, 2020, 32(4): 463-467.
|
29. |
Lippai D, Bala S, Catalano D, et al. Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice. Alcohol Clin Exp Res, 2014, 38(8): 2217-2224.
|
30. |
Wan J, Xia L, Xu W, et al. Expression and function of miR-155 in diseases of the gastrointestinal tract. Int J Mol Sci, 2016, 17(5): 709.
|
31. |
Tian R, Wang RL, Xie H, et al. Overexpressed miRNA-155 dysregulates intestinal epithelial apical junctional complex in severe acute pancreatitis. World J Gastroenterol, 2013, 19(45): 8282-8291.
|
32. |
Wang D, Tang M, Zong P, et al. MiRNA-155 regulates the Th17/Treg ratio by targeting SOCS1 in severe acute pancreatitis. Front Physiol, 2018, 9: 686.
|
33. |
Zhang X, Chu J, Sun H, et al. MiR-155 aggravates impaired autophagy of pancreatic acinar cells through targeting Rictor. Acta Biochim Biophys Sin (Shanghai), 2020, 52(2): 192-199.
|
34. |
Xiang H, Tao X, Xia S, et al. Targeting microRNA function in acute pancreatitis. Front Physiol, 2017, 8: 726.
|
35. |
Yang Y, Huang Q, Luo C, et al. MicroRNAs in acute pancreatitis: from pathogenesis to novel diagnosis and therapy. J Cell Physiol, 2020, 235(3): 1948-1961.
|
36. |
Chen J, Wan J, Ye J, et al. Emerging role of lncRNAs in the normal and diseased intestinal barrier. Inflamm Res, 2018, 67(9): 757-764.
|
37. |
Song G, Zhou J, Song R, et al. Long noncoding RNA H19 regulates the therapeutic efficacy of mesenchymal stem cells in rats with severe acute pancreatitis by sponging miR-138-5p and miR-141-3p. Stem Cell Res Ther, 2020, 11(1): 420.
|
38. |
李保军, 黄来, 孙远新. 长链非编码 RNAH19 在急性胰腺炎患者血清中的表达及意义. 临床肝胆病杂志, 2017, 33(3): 492-496.
|
39. |
Wang Y, Hylemon PB, Zhou H. Long non-coding RNA H19: a key player in liver diseases. Hepatology, 2021, 74(3): 1652-1659.
|
40. |
张旭, 张宏伟. 长链非编码 RNA-MEG3 在急性胰腺炎中对外分泌细胞凋亡作用及其临床意义的研究. 郑州: 郑州大学, 2018.
|
41. |
Dai Y, Wan Y, Qiu M, et al. lncRNA MEG3 suppresses the tumorigenesis of hemangioma by sponging miR-494 and regulating PTEN/ PI3K/AKT pathway. Cell Physiol Biochem, 2018, 51(6): 2872-2886.
|
42. |
Ballantyne MD, McDonald RA, Baker AH. lncRNA/microRNA interactions in the vasculature. Clin Pharmacol Ther, 2016, 99(5): 494-501.
|
43. |
Chen X, Song D. LncRNA MEG3 participates in caerulein-induced inflammatory injury in human pancreatic cells via regulating miR-195-5p/FGFR2 axis and inactivating NF-κB pathway. Inflammation, 2021, 44(1): 160-173.
|
44. |
张旭, 付强, 秦涛, 等. 急性胰腺炎患者血清长链非编码 RNA-MEG3 表达及意义. 中华实用诊断与治疗杂志, 2018, 32(1): 28-30.
|
45. |
Wang L, Wei Z, Wu K, et al. Long noncoding RNA B3GALT5-AS1 suppresses colon cancer liver metastasis via repressing microRNA-203. Aging (Albany NY), 2018, 10(12): 3662-3682.
|
46. |
Wang L, Zhao X, Wang Y. The pivotal role and mechanism of long non-coding RNA B3GALT5-AS1 in the diagnosis of acute pancreatitis. Artif Cells Nanomed Biotechnol, 2019, 47(1): 2307-2315.
|
47. |
Xia S, Lin J, Wang L, et al. Characteristics of long noncoding RNAs in the pancreas of rats with acute pancreatitis. Pancreas, 2020, 49(1): 96-104.
|