1. |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin, 2021, 71(1): 7-33.
|
2. |
Zhu Y, Liu Y, Zhang C, et al. Tamoxifen-resistant breast cancer cells are resistant to DNA-damaging chemotherapy because of upregulated BARD1 and BRCA1. Nat Commun, 2018, 9(1): 1595.
|
3. |
Kruger DT, Alexi X, Opdam M, et al. IGF-1R pathway activation as putative biomarker for linsitinib therapy to revert tamoxifen resistance in ER-positive breast cancer. Int J Cancer, 2020, 146(8): 2348-2359.
|
4. |
时云, 王耕, 周坤, 等. Mdm2在ERα阳性乳腺癌组织中的表达及其siRNA对MCF-7细胞生物学行为的影响. 中国普外基础与临床杂志, 2016, 23(9): 1066-1072.
|
5. |
Jackisch C. Overcoming endocrine resistance in neoadjuvant endocrine therapy for early breast cancer. Lancet Oncol, 2019, 20(9): 1185-1187.
|
6. |
Fu B, Zhou Y, Ni X, et al. Natural killer cells promote fetal development through the secretion of growth-promoting factors. Immunity, 2017, 47(6): 1100-1113.
|
7. |
Tagliaferri C, Wittrant Y, Davicco MJ, et al. Muscle and bone, two interconnected tissues. Ageing Res Rev, 2015, 21: 55-70.
|
8. |
Casciello F, Al-Ejeh F, Kelly G, et al. G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proc Natl Acad Sci USA, 2017, 114(27): 7077-7082.
|
9. |
潘秀华, 陈晓慧, 李晓青, 等. 骨诱导因子mRNA表达与乳腺癌发生和转移的关系. 天津医科大学学报, 2008, 14(2): 203-206.
|
10. |
Xu T, Zhang R, Dong M, et al. Osteoglycin (OGN) inhibits cell proliferation and invasiveness in breast cancer via PI3K/Akt/mTOR signaling pathway. Onco Targets Ther, 2019, 12: 10639-10650.
|
11. |
刘敏, 谢巍伟, 郑维, 等. 雌二醇与ESR1靶向结合通过ERK信号通路调控软骨细胞的增殖. 南方医科大学学报, 2019, 39(2): 134-143.
|
12. |
DeSantis C, Ma J, Bryan L, et al. Breast cancer statistics, 2013. CA Cancer J Clin, 2014, 64(1): 52-62.
|
13. |
Zhao J, Hu C, Wang C, et al. Breast cancer primary tumor ER expression pattern predicts its expression concordance in matched synchronous lymph node metastases. BMC Cancer, 2018, 18(1): 1290.
|
14. |
Hu X, Li YQ, Li QG, et al. Osteoglycin (OGN) reverses epithelial to mesenchymal transition and invasiveness in colorectal cancer via EGFR/Akt pathway. J Exp Clin Cancer Res, 2018, 37(1): 41.
|
15. |
Hu X, Li YQ, Li QG, et al. Osteoglycin-induced VEGF inhibition enhances t lymphocytes infiltrating in colorectal cancer. EBioMedicine, 2018, 34: 35-45.
|
16. |
Wassermann-Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis, 2017, 8(4): e2733.
|
17. |
Saura C, Hlauschek D, Oliveira M, et al. Neoadjuvant letrozole plus taselisib versus letrozole plus placebo in postmenopausal women with oestrogen receptor-positive, HER2-negative, early-stage breast cancer (LORELEI): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol, 2019, 20(9): 1226-1238.
|
18. |
覃绎, 袁洪范, 曾蓓蕾, 等. ATPIA2通过Src/PI3K/Akt信号通路抑制人乳腺癌细胞的侵袭和迁移. 第三军医大学学报, 2019, 41(22): 2166-2173.
|
19. |
Kornblum N, Zhao F, Manola J, et al. Randomized phase Ⅱ trial of fulvestrant plus everolimus or placebo in postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer resistant to aromatase inhibitor therapy: results of PrE0102. J Clin Oncol, 2018, 36(16): 1556-1563.
|
20. |
André F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med, 2019, 380(20): 1929-1940.
|
21. |
Toska E, Castel P, Chhangawala S, et al. PI3K inhibition activates SGK1 via a feedback loop to promote chromatin-based regulation of ER-dependent gene expression. Cell Rep, 2019, 27(1): 294-306.
|
22. |
Castel P, Ellis H, Bago R, et al. PDK1-SGK1 signaling sustains AKT-independent mTORC1 activation and confers resistance to PI3Kα inhibition. Cancer Cell, 2016, 30(2): 229-242.
|
23. |
Vasan N, Toska E, Scaltriti M. Overview of the relevance of PI3K pathway in HR-positive breast cancer. Ann Oncol, 2019, 30(Suppl_10): x3-x11.
|
24. |
Alayev A, Salamon RS, Berger SM, et al. mTORC1 directly phosphorylates and activates ERα upon estrogen stimulation. Oncogene, 2016, 35(27): 3535-3543.
|
25. |
Huang M, Wang Y. Roles of small gtpases in acquired tamoxifen resistance in MCF-7 cells revealed by targeted, quantitative proteomic analysis. Anal Chem, 2018, 90(24): 14551-14560.
|