1. |
DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin, 2019, 69(6): 438-451.
|
2. |
Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China. Lancet Oncol, 2014, 15(7): e279-e289. doi: 10.1016/S1470-2045(13)70567-9.
|
3. |
李凡, 任国胜. 乳腺癌诊治现状与展望. 中国普外基础与临床杂志, 2019, 26(12): 1393-1397.
|
4. |
D’Amato V, Raimondo L, Formisano L, et al. Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treat Rev, 2015, 41(10): 877-883.
|
5. |
Ruprecht B, Zaal EA, Zecha J, et al. Lapatinib resistance in breast cancer cells is accompanied by phosphorylation-mediated reprogramming of glycolysis. Cancer Res, 2017, 77(8): 1842-1853.
|
6. |
Pondé N, Brandão M, El-Hachem G, et al. Treatment of advanced HER2-positive breast cancer: 2018 and beyond. Cancer Treat Rev, 2018, 67: 10-20.
|
7. |
Liu L, Greger J, Shi H, et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res, 2009, 69(17): 6871-6878.
|
8. |
Desany B, Zhang Z. Bioinformatics and cancer target discovery. Drug Discov Today, 2004, 9(18): 795-802.
|
9. |
Behzadi P, Ranjbar R. DNA microarray technology and bioinformatic web services. Acta Microbiol Immunol Hung, 2019, 66(1): 19-30.
|
10. |
Lehrke M, Lazar MA. The many faces of PPARgamma. Cell, 2005, 123(6): 993-999.
|
11. |
Yousefnia S, Momenzadeh S, Seyed Forootan F, et al. The influence of peroxisome proliferator-activated receptor γ (PPARγ) ligands on cancer cell tumorigenicity. Gene, 2018, 649: 14-22.
|
12. |
Michalik L, Desvergne B, Wahli W. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer, 2004, 4(1): 61-70.
|
13. |
Yang PB, Hou PP, Liu FY, et al. Blocking PPARγ interaction facilitates Nur77 interdiction of fatty acid uptake and suppresses breast cancer progression. Proc Natl Acad Sci U S A, 2020, 117(44): 27412-27422.
|
14. |
杨宇钦. PPARG/FABP4信号通路介导乳腺癌增殖侵袭能力的体外研究. 广州: 南方医科大学, 2020.
|
15. |
Clark DA, Coker R. Transforming growth factor-beta (TGF-beta). Int J Biochem Cell Biol, 1998, 30(3): 293-298.
|
16. |
Caja L, Dituri F, Mancarella S, et al. TGF-β and the tissue microenvironment: relevance in fibrosis and cancer. Int J Mol Sci, 2018, 19(5): E1294. doi: 10.3390/ijms19051294.
|
17. |
Dahmani A, Delisle JS. TGF-β in T cell biology: implications for cancer immunotherapy. Cancers (Basel), 2018, 10(6): E194. doi: 10.3390/cancers10060194.
|
18. |
Li S, Liu M, Do MH, et al. Cancer immunotherapy via targeted TGF-β signalling blockade in T H cells. Nature, 2020, 587(7832): 121-125.
|
19. |
Vitiello GAF, Amarante MK, Banin-Hirata BK, et al. Transforming growth factor beta receptorⅡ (TGFBR2) promoter region polymorphism in Brazilian breast cancer patients: association with susceptibility, clinicopathological features, and interaction with TGFB1 haplotypes. Breast Cancer Res Treat, 2019, 178(1): 207-219.
|
20. |
Busch S, Sims AH, Stål O, et al. Loss of TGFβ receptor type 2 expression impairs estrogen response and confers tamoxifen resistance. Cancer Res, 2015, 75(7): 1457-1469.
|
21. |
Rhee J, Han SW, Cha Y, et al. High serum TGF-α predicts poor response to lapatinib and capecitabine in HER2-positive breast cancer. Breast Cancer Res Treat, 2011, 125(1): 107-114.
|
22. |
Lopez-Dee Z, Pidcock K, Gutierrez LS. Thrombospondin-1: multiple paths to inflammation. Mediators Inflamm, 2011, 2011: 296069. doi: 10.1155/2011/296069 .
|
23. |
廖雪洪, 郑雄伟, 朱伟峰, 等. 乳腺癌中THBS-1表达及与EMT的相关性. 现代肿瘤医学, 2016, 24(20): 3219-3225.
|
24. |
包楠丁, 贾永峰. THBS1在肿瘤中作用的研究进展. 标记免疫分析与临床, 2021, 28(4): 703-707.
|
25. |
Shen J, Cao B, Wang Y, et al. Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer. J Exp Clin Cancer Res, 2018, 37(1): 175. doi: 10.1186/s13046-018-0850-z.
|
26. |
Pal SK, Nguyen CT, Morita KI, et al. THBS1 is induced by TGFB1 in the cancer stroma and promotes invasion of oral squamous cell carcinoma. J Oral Pathol Med, 2016, 45(10): 730-739.
|
27. |
Murphy G. Tissue inhibitors of metalloproteinases. Genome Biol, 2011, 12(11): 233. doi: 10.1186/gb-2011-12-11-233.
|
28. |
樊嵘, 金冶宁. TIMP-1在乳腺癌中的作用机制和临床意义. 现代肿瘤医学, 2009, 17(1): 154-158.
|
29. |
Hekmat O, Munk S, Fogh L, et al. TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells. J Proteome Res, 2013, 12(9): 4136-4151.
|
30. |
Ho D, Huang J, Chapman JW, et al. Impact of serum HER2, TIMP-1,and CAIX on outcome for HER2+ metastatic breast cancer patients: CCTG MA. 31 (lapatinib vs. trastuzumab). Breast Cancer Res Treat, 2017, 164(3): 571-580.
|
31. |
Li S, Wei X, He J, et al. Plasminogen activator inhibitor-1 in cancer research. Biomed Pharmacother, 2018, 105: 83-94.
|
32. |
Ghosh AK, Vaughan DE. PAI-1 in tissue fibrosis. J Cell Physiol, 2012, 227(2): 493-507.
|
33. |
Duffy MJ, Harbeck N, Nap M, et al. Clinical use of biomarkers in breast cancer: updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer, 2017, 75: 284-298.
|
34. |
Barzaman K, Karami J, Zarei Z, et al. Breast cancer: biology, biomarkers, and treatments. Int Immunopharmacol, 2020, 84: 106535. doi: 10.1016/j.intimp.2020.106535.
|
35. |
Duffy MJ, McGowan PM, Harbeck N, et al. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res, 2014, 16(4): 428. doi: 10.1186/s13058-014-0428-4.
|