1. |
康焰, 唐之韵. 重症创伤: 重症医学有不可替代的作用. 中华重症医学电子杂志, 2016, 2(1): 26-31.
|
2. |
熊德鑫, 盛志勇. 创伤外科领域中的几个微生态问题. 中国微生态学杂志, 1992, 4(2): 71-74.
|
3. |
Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med, 2016, 375(24): 2369-2379.
|
4. |
Pai R, Kang G. Microbes in the gut: a digestable account of host-symbiont interactions. Indian J Med Res, 2008, 128(5): 587-594.
|
5. |
唐立. 人类肠道微生态基础与应用研究进展. 沈阳医学院学报, 2016, 18(5): 321-324.
|
6. |
Bäckhed F, Fraser CM, Ringel Y, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe, 2012, 12(5): 611-622.
|
7. |
陈卫, 田培郡, 张程程, 等. 肠道菌群与人体健康的研究热点与进展. 中国食品学报, 2017, 17(2): 1-9.
|
8. |
张雅婷, 孙月梅, 张娟红, 等. 肠道菌群与药物相互作用机制的研究进展. 中国药理学通报, 2020, 36(12): 1650-1655.
|
9. |
王正国. 创伤基础. 武汉: 湖北科学技术出版社, 2016: 1-2.
|
10. |
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159): 1789-1858.
|
11. |
国家统计局. 中国统计年鉴2017. [2017-10-13]. http://www.stats.gov.cn/tjsj/tjcbw/201710/t20171012_1541643.html.
|
12. |
Leilei D, Pengpeng Y, Haagsma JA, et al. The burden of injury in China, 1990-2017: findings from the Global Burden of Disease Study 2017. Lancet Public Health, 2019, 4(9): e449-e461.
|
13. |
《中国慢性病预防与控制》编辑部. 卫生部公布我国伤害预防报告. 中国慢性病预防与控制, 2007, 15(5): 409.
|
14. |
创伤医学新动向: 救治年度报告启动编写 十家医院加入百度创伤地图. [2020-10-17]. https://new.qq.com/omn/20201017/20201017A09RS200.html.
|
15. |
联合国报告: 本世纪中期天灾将威胁全球15亿. [2010-11-12]. http://www.chinanews.com/gj/2010/11-12/2653061.shtml.
|
16. |
李玉恒, 武文豪, 刘彦随. 近百年全球重大灾害演化及对人类社会弹性能力建设的启示. 中国科学院院刊, 2020, 35(3): 345-352.
|
17. |
Weiser TG, Regenbogen SE, Thompson KD, et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet, 2008, 372(9633): 139-144.
|
18. |
国家统计局. 医疗卫生机构住院病人手术人次(万人次). https://data.stats.gov.cn/search.htm?s=%E6%89%8B%E6%9C%AF%E5%85%A8%E5%9B%BD2019.
|
19. |
黄宁, 李著华. 病理生理学. 北京: 科学出版社, 2013: 81, 85.
|
20. |
Burmeister DM, Johnson TR, Lai Z, et al. The gut microbiome distinguishes mortality in trauma patients upon admission to the emergency department. J Trauma Acute Care Surg, 2020, 88(5): 579-587.
|
21. |
Nicholson SE, Merrill D, Zhu C, et al. Polytrauma independent of therapeutic intervention alters the gastrointestinal microbiome. Am J Surg, 2018, 216(4): 699-705.
|
22. |
Nicholson SE, Burmeister DM, Johnson TR, et al. A prospective study in severely injured patients reveals an altered gut microbiome is associated with transfusion volume. J Trauma Acute Care Surg, 2019, 86(4): 573-582.
|
23. |
Howard BM, Kornblith LZ, Christie SA, et al. Characterizing the gut microbiome in trauma: significant changes in microbial diversity occur early after severe injury. Trauma Surg Acute Care Open, 2017, 2(1): e000108. doi: 10.1136/tsaco-2017-000108.
|
24. |
Corcione S, Lupia T, De Rosa FG, et al. Microbiome in the setting of burn patients: implications for infections and clinical outcomes. Burns Trauma, 2020, 8: tkaa033. doi: 10.1093/burnst/tkaa033.
|
25. |
Urban RJ, Pyles RB, Stewart CJ, et al. Altered fecal microbiome years after traumatic brain injury. J Neurotrauma, 2020, 37(8): 1037-1051.
|
26. |
Zhang C, Zhang W, Zhang J, et al. Gut microbiota dysbiosis in male patients with chronic traumatic complete spinal cord injury. J Transl Med, 2018, 16(1): 353. doi: 10.1186/s12967-018-1735-9.
|
27. |
Kigerl KA, Mostacada K, Popovich PG. Gut microbiota are disease-modifying factors after traumatic spinal cord injury. Neurotherapeutics, 2018, 15(1): 60-67.
|
28. |
Nicholson SE, Watts LT, Burmeister DM, et al. Moderate traumatic brain injury alters the gastrointestinal microbiome in a time-dependent manner. Shock, 2019, 52(2): 240-248.
|
29. |
Appiah SA, Foxx CL, Langgartner D, et al. Evaluation of the gut microbiome in association with biological signatures of inflammation in murine polytrauma and shock. Sci Rep, 2021, 11(1): 6665. doi: 10.1038/s41598-021-85897-w.
|
30. |
Guyton K, Alverdy JC. The gut microbiota and gastrointestinal surgery. Nat Rev Gastroenterol Hepatol, 2017, 14(1): 43-54.
|
31. |
王娜, 周勇, 李卡. 肠道菌群与腹部手术后胃肠功能障碍的相关性研究进展. 中国普外基础与临床杂志, 2022, 29(2): 248-254.
|
32. |
Treangen TJ, Wagner J, Burns MP, et al. Traumatic brain injury in mice induces acute bacterial dysbiosis within the fecal microbiome. Front Immunol, 2018, 9: 2757. doi: 10.3389/fimmu.2018.02757.
|
33. |
Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr, 2013, 98(1): 16-24.
|
34. |
俞美红, 俞秀丽, 陈春雷, 等. 原位肝移植大鼠肠道微生态状况研究. 中华外科杂志, 2008, 46(15): 1139-1142.
|
35. |
Patel JJ, Rosenthal MD, Miller KR, et al. The gut in trauma. Curr Opin Crit Care, 2016, 22(4): 339-346.
|
36. |
Albenberg L, Esipova TV, Judge CP, et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology, 2014, 147(5): 1055-1063.e8.
|
37. |
Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe, 2007, 2(3): 204. doi: 10.1016/j.chom.2007.08.002.
|
38. |
Sundman MH, Chen NK, Subbian V, et al. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun, 2017, 66: 31-44.
|
39. |
Hanscom M, Loane DJ, Shea-Donohue T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J Clin Invest, 2021, 131(12): e143777. doi: 10.1172/JCI143777.
|
40. |
Weaver JL. The brain-gut axis: A prime therapeutic target in traumatic brain injury. Brain Res, 2021, 1753: 147225. doi: 10.1016/j.brainres.2020.147225.
|
41. |
You W, Zhu Y, Wei A, et al. Traumatic brain injury induces gastrointestinal dysfunction and dysbiosis of gut microbiota accompanied by alterations of bile acid profile. J Neurotrauma, 2022, 37(1-2): 227-237.
|
42. |
Bazzocchi G, Turroni S, Bulzamini MC, et al. Changes in gut microbiota in the acute phase after spinal cord injury correlate with severity of the lesion. Sci Rep, 2021, 11(1): 12743. doi: 10.1038/s41598-021-92027-z.
|
43. |
Jing Y, Bai F, Yu Y. Spinal cord injury and gut microbiota: A review. Life Sci, 2021, 266: 118865.
|
44. |
Fink MP, Delude RL. Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit Care Clin, 2005, 21(2): 177-196.
|
45. |
Kigerl KA, Hall JC, Wang L, et al. Gut dysbiosis impairs recovery after spinal cord injury. J Exp Med, 2016, 213(12): 2603-2620.
|
46. |
George AK, Behera J, Homme RP, et al. Rebuilding microbiome for mitigating traumatic brain injury: Importance of restructuring the gut-microbiome-brain axis. Mol Neurobiol, 2021, 58(8): 3614-3627.
|
47. |
Zhan G, Hua D, Huang N, et al. Anesthesia and surgery induce cognitive dysfunction in elderly male mice: the role of gut microbiota. Aging (Albany NY), 2019, 11(6): 1778-1790.
|
48. |
Liu Z, Li C, Huang M, et al. Positive regulatory effects of perioperative probiotic treatment on postoperative liver complications after colorectal liver metastases surgery: a double-center and double-blind randomized clinical trial. BMC Gastroenterol, 2015, 15: 34. doi: 10.1186/s12876-015-0260-z.
|
49. |
Jing Y, Yu Y, Bai F, et al. Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis. Microbiome, 2021, 9(1): 59. doi: 10.1186/s40168-021-01007-y.
|
50. |
Schmidt EKA, Torres-Espin A, Raposo PJF, et al. Fecal transplant prevents gut dysbiosis and anxiety-like behaviour after spinal cord injury in rats. PLoS One, 2020, 15(1): e0226128. doi: 10.1371/journal.pone.0226128.
|
51. |
Du D, Tang W, Zhou C, et al. Fecal microbiota transplantation is a promising method to restore gut microbiota dysbiosis and relieve neurological deficits after traumatic brain injury. Oxid Med Cell Longev, 2021, 2021: 5816837. doi: 10.1155/2021/5816837.
|
52. |
Ma Y, Liu T, Fu J, et al. Lactobacillus acidophilus exerts neuroprotective effects in mice with traumatic brain injury. J Nutr, 2019, 149(9): 1543-1552.
|
53. |
Li H, Sun J, Du J, et al. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol Motil, 2018, 30(5): e13260. doi: 10.1111/nmo.13260.
|
54. |
史成和, 张沂, 聂玉琼. 天然药物保护创伤后肠道屏障功能的研究进展. 人民军医, 2013, 56(6): 712-714.
|
55. |
张振显. 姜黄素对大鼠脊髓损伤后微生物多样性及脊髓转录组学影响的研究. 延安: 延安大学, 2019.
|
56. |
王金轩. 大黄对急性闭合性颅脑损伤患者肠道菌群的影响. 山东中医杂志, 2009, 28(1): 25-26.
|
57. |
王颖. 电针对重度脊髓损伤大鼠排便功能及肠道微生态调节作用的研究. 上海: 上海体育学院, 2020.
|
58. |
张剑. TLR5-RA在肠粘膜固有层树突状细胞抵御创伤性失血性休克后肠道细菌移位中的作用及机制研究. 浙江: 浙江大学, 2017.
|
59. |
温联溥. 机械性创伤对SD大鼠盲肠黏膜的损伤及GLP-2对其的保护作用. 大连: 大连医科大学, 2018.
|