1. |
Li X, Zeng Z, Wang J, et al. MicroRNA-9 and breast cancer. Biomed Pharmacother, 2020, 122: 109687. doi: 10.1016/j.biopha.2019.109687.
|
2. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
3. |
刘广, 王永胜. 乳腺癌新辅助化疗后保乳手术研究进展. 中国普外基础与临床杂志, 2010, 17(12): 1249-1252.
|
4. |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
|
5. |
Malvezzi M, Bertuccio P, Rosso T, et al. European cancer mortality predictions for the year 2015: does lung cancer have the highest death rate in EU women? Ann Oncol, 2015, 26(4): 779-786.
|
6. |
Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet, 2014, 384(9938): 164-172.
|
7. |
Broz P. Immunology: caspase target drives pyroptosis. Nature, 2015, 526(7575): 642-643.
|
8. |
Wang WJ, Chen D, Jiang MZ, et al. Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins. J Dig Dis, 2018, 19(2): 74-83.
|
9. |
Ma Y, Chen Y, Lin C, et al. Biological functions and clinical significance of the newly identified long non-coding RNA RP1-85F18. 6 in colorectal cancer. Oncol Rep, 2018, 40(5): 2648-2658.
|
10. |
Gao J, Qiu X, Xi G, et al. Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non-small cell lung cancer. Oncol Rep, 2018, 40(4): 1971-1984.
|
11. |
Peng J, Jiang H, Guo J, et al. CD147 expression is associated with tumor proliferation in bladder cancer via GSDMD. Biomed Res Int, 2020, 2020: 7638975. doi: 10.1155/2020/7638975.
|
12. |
Xue Y, Du HD, Tang D, et al. Correlation between the NLRP3 inflammasome and the prognosis of patients with LSCC. Front Oncol, 2019, 9: 588. doi: 10.3389/fonc.2019.00588.
|
13. |
Gaidt MM, Hornung V. Pore formation by GSDMD is the effector mechanism of pyroptosis. EMBO J, 2016, 35(20): 2167-2169.
|
14. |
Xia X, Wang X, Cheng Z, et al. The role of pyroptosis in cancer: pro-cancer or pro-“host”? Cell Death Dis, 2019, 10(9): 650. doi: 10.1038/s41419-019-1883-8.
|
15. |
Liu J, Gao L, Zhu X, et al. Gasdermin D is a novel prognostic biomarker and relates to TMZ response in glioblastoma. Cancers (Basel), 2021, 13(22): 5620. doi: 10.3390/cancers13225620.
|
16. |
Martinon F, Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ, 2007, 14(1): 10-22.
|
17. |
Molla MD, Akalu Y, Geto Z, et al. Role of caspase-1 in the pathogenesis of inflammatory-associated chronic noncommunicable diseases. J Inflamm Res, 2020, 13: 749-764.
|
18. |
Domblides C, Soubeyran I, Lartigue L, et al. Prognostic role of inflammasome components in human colorectal cancer. Cancers (Basel). 2020, 12(12): 3500. doi: 10.3390/cancers12123500.
|
19. |
Winter RN, Kramer A, Borkowski A, et al. Loss of caspase-1 and caspase-3 protein expression in human prostate cancer. Cancer Res, 2001, 61(3): 1227-1232.
|
20. |
Sun Y, Guo Y. Expression of caspase-1 in breast cancer tissues and its effects on cell proliferation, apoptosis and invasion. Oncol Lett, 2018, 15(5): 6431-6435.
|
21. |
Tsuchiya K. Switching from apoptosis to pyroptosis: gasdermin-elicited inflammation and antitumor immunity. Int J Mol Sci, 2021, 22(1): 426. doi: 10.3390/ijms22010426.
|
22. |
Wang K, Sun Q, Zhong X, et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell, 2020, 180(5): 941-955.
|
23. |
Yang Y, Liu PY, Bao W, et al. Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer, 2020, 20(1): 28. doi: 10.1186/s12885-019-6491-6.
|
24. |
Yue E, Tuguzbaeva G, Chen X, et al. Anthocyanin is involved in the activation of pyroptosis in oral squamous cell carcinoma. Phytomedicine, 2019, 56: 286-294.
|