1. |
Hilmi IA, Damian D, Al-Khafaji A, et al. Acute kidney injury following orthotopic liver transplantation: incidence, risk factors, and effects on patient and graft outcomes. Br J Anaesth, 2015, 114(6): 919-926.
|
2. |
Barreto AG, Daher EF, Silva Junior GB, et al. Risk factors for acute kidney injury and 30-day mortality after liver transplantation. Ann Hepatol, 2015, 14(5): 688-694.
|
3. |
Thongprayoon C, Kaewput W, Thamcharoen N, et al. Incidence and impact of acute kidney injury after liver transplantation: a meta-analysis. J Clin Med, 2019, 8(3): 372. doi: 10.3390/jcm8030372.
|
4. |
Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care, 2004, 8(4): R204-R212. doi: 10.1186/cc2872.
|
5. |
Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care, 2007, 11(2): R31. doi: 10.1186/cc5713.
|
6. |
Section 2: AKI definition. Kidney Int Suppl (2011), 2012, 2(1): 19-36.
|
7. |
Angeli P, Ginès P, Wong F, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatol, 2015, 62(4): 968-974.
|
8. |
Francoz C, Sola E. Assessment of renal function in cirrhosis: Sarcopenia, gender and ethnicity matter. J Hepatol, 2019, 70(5): 828-830.
|
9. |
Lewandowska L, Małyszko J, Joanna Matuszkiewicz-Rowińska J. Urinary and serum biomarkers for prediction of acute kidney injury in patients undergoing liver transplantation. Ann Transplant, 2019, 24: 291-297.
|
10. |
Fuhrman DY, Kellum JA, Joyce EL, et al. The use of urinary biomarkers to predict acute kidney injury in children after liver transplant. Pediatr Transplant, 2020, 24(1): e13608. doi: 10.1111/petr.13608.
|
11. |
Cullaro G, Pisa JF, Brown RS Jr, et al. Early postoperative neutrophil gelatinase-associated lipocalin predicts the develop-ment of chronic kidney disease after liver transplantation. Transplantation, 2018, 102(5): 809-815.
|
12. |
Yoon KC, Lee KW, Oh SC, et al. Urinary neutrophil gelatinase-associated lipocalin as a biomarker for renal injury in liver transplant recipients using calcineurin inhibitors. Transplant Proc, 2018, 50(10): 3667-3672.
|
13. |
Lim AI, Tang SC, Lai KN, et al. Kidney injury molecule-1: more than just an injury marker of tubular epithelial cells? J Cell Physiol, 2013, 228(5): 917-24.
|
14. |
Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant, 2009, 24(11): 3265-3268.
|
15. |
罗文辉, 郑虹, 张建军, 等. 肝移植后早期并发急性肾损伤时尿液中肾损伤分子-1的变化及意义. 中华器官移植杂志, 2012, 33(5): 287-290.
|
16. |
Dedeoglu B, de Geus HR, Fortrie G, et al. Novel biomarkers for the prediction of acute kidney injury in patients undergoing liver transplantati on. Biomark Med, 2013, 7(6): 947-957.
|
17. |
Sirota JC, Walcher A, Faubel S, et al. Urine IL-18, NGAL, IL-8 and serum IL-8 are biomarkers of acute kidney injury following liver transplantation. BMC Nephrol, 2013, 14: 17. doi: 10.1186/1471-2369-14-17.
|
18. |
Sanchez EQ, Gonwa TA, Levy MF, et al. Preoperative and perioperative predictors of the need for renal replacement therapy after orthotopic liver transplantation. Transplantation, 2004, 78(7): 1048-1054.
|
19. |
Cheng Y, Wei GQ, Cai QC, et al. Prognostic value of model for end-stage liver disease incorporating with serum sodium score for development of acute kidney injury after liver transplantation. Chin Med J (Engl), 2018, 131(11): 1314-1320.
|
20. |
Jadlowiec C, Smith M, Neville M, et al. Acute kidney injury patterns following transplantation of steatotic liver allografts. J Clin Med, 2020, 9(4): 954. doi: 10.3390/jcm9040954.
|
21. |
Cho H, Bae J, Yoon HK, et al. Perioperative ABO blood group isoagglutinin titer and the risk of acute kidney injury after ABO-incompatible living donor liver transplantation. J Clin Med, 2021, 10(8): 1679. doi: 10.3390/jcm10081679.
|
22. |
Kollmann D, Neong SF, Rosales R, et al. Renal Dysfunction After Liver Transplantation: Effect of Donor Type. Liver Transpl, 2020, 26(6): 799-810.
|
23. |
Ma G, Jiang H, Zhang X, et al. Acute kidney injury after orthotopic liver transplantation using living donor versus deceased donor g rafts: A propensity score-matched analysis. Liver Transpl, 2015, 21(12): 1560. doi: 10.1002/lt.24224.
|
24. |
Yin ZY, Li BF, Zou FN, et al. Risk factors of acute kidney injury after orthotopic liver transplantation in China. Sci Rep, 2017, 7: 41555. doi: 10.1038/srep41555.
|
25. |
Jun IG, Kwon HM, Jung KW, et al. The impact of postreperfusion syndrome on acute kidney injury in living donor liver transplantation: a propensity score analysis. Anesth Analg, 2018, 127(2): 369-378.
|
26. |
Hannon V, Kothari RP, Zhang L, et al. The association between vena cava implantation technique and acute kidney injury after liver transplantation. Transplantation, 2020, 104(11): e308-e316. doi: 10.1097/TP.0000000000003331.
|
27. |
Sun K, Hong F, Wang Y, et al. Venovenous bypass is associated with a lower incidence of acute kidney injury after liver transplanta tion in patients with compromised pretransplant renal function. Anesth Analg, 2017, 125(5): 1463-1470.
|
28. |
Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol, 2009, 4(2): 481-508.
|
29. |
Nadeem A, Salahuddin N, El Hazmi A, et al. Chloride-liberal fluids are associated with acute kidney injury after liver transplantation. Crit Care, 2014, 18(6): 625. doi: 10.1186/s13054-014-0625-7.
|
30. |
Utsumi M, Umeda Y, Sadamori H, et al. Risk factors for acute renal injury in living donor liver transplantation: evaluation of the RIFLE criteria. Transpl Int, 2013, 26(8): 842-852.
|
31. |
Park MH, Shim HS, Kim WH, et al. Clinical risk scoring models for prediction of acute kidney injury after living donor liver transplantation: A retrospective observational study. PLoS One, 2015, 10(8): e0136230. doi: 10.1371/journal.pone.0136230.
|
32. |
European Association for the Study of the Liver. Electronic address: easloffice@easloffice. eu; European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol, 2018, 69(2): 406-460.
|
33. |
Téllez L, Ibáñez -Samaniego L, Pérez Del Villar C, et al. Non-selective beta-blockers impair global circulatory homeostasis and renal function in cirrhotic patients with refractory ascites. J Hepatol, 2020, 73(6): 1404-1414.
|
34. |
Wong F, Pappas SC, Curry MP, et al. Terlipressin plus albumin for the treatment of type 1 hepatorenal syndrome. N Engl J Med, 2021, 384(9): 818-828.
|
35. |
Piano S, Gambino C, Vettore E, et al. Response to terlipressin and albumin is associated with improved liver transplant outcomes in patient s with hepatorenal syndrome. Hepatology, 2021, 73(5): 1909-1919.
|
36. |
Guerrero-Domínguez R, López-Herrera Rodríguez D, Acosta-Martínez J, et al. Perioperative renal protection strategies in liver transplantation. Nefrologia, 2014, 34(3): 276-284.
|
37. |
Shaw AD, Kellum JA. The risk of AKI in patients treated with intravenous solutions containing hydroxyethyl starch. Clin J Am Soc Nephrol, 2013, 8(3): 497-503.
|
38. |
Mukhtar A, Aboulfetouh F, Obayah G, et al. The safety of modern hydroxyethyl starch in living donor liver transplantation: a comparison with hum an albumin. Anesth Analg, 2009, 109(3): 924-930.
|
39. |
Moeller C, Fleischmann C, Thomas-Rueddel D, et al. How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. J Crit Care, 2016, 35: 75-83.
|
40. |
Gameiro J, Fonseca JA, Outerelo C, et al. Acute kidney injury: from diagnosis to prevention and treatment strategies. J Clin Med, 2020, 9(6): 1704. doi: 10.3390/jcm9061704.
|
41. |
Karvellas CJ, Taylor S, Bigam D, et al. Intraoperative continuous renal replacement therapy during liver transplantation: a pilot randomized- controlled trial (INCEPTION). Can J Anaesth, 2019, 66(10): 1151-1161.
|
42. |
Huang HB, Xu Y, Zhou H, et al. Intraoperative continuous renal replacement therapy during liver transplantation: a meta-analysis. Liver Transpl, 2020, 26(8): 1010-1018.
|
43. |
郑树森, 沈恬, 徐骁, 等. 中国肝移植受者肾损伤管理专家共识(2017版). 中华移植杂志(电子版), 2017, 11(3): 130-137.
|
44. |
Tan HK, Marquez M, Wong F, et al. Pretransplant type 2 hepatorenal syndrome is associated with persistently impaired renal function after liver transplantation. Transplantation, 2015, 99(7): 1441-1446.
|
45. |
Kong Y, Wang D, Shang Y, et al. Calcineurin-inhibitor minimization in liver transplant patients with calcineurin-inhibitor-related renal dysfunction: a meta-analysis. PLoS One, 2011, 6(9): e24387. doi: 10.1371/journal.pone.0024387.
|
46. |
Neuberger JM, Mamelok RD, Neuhaus P, et al. Delayed introduction of reduced-dose tacrolimus, and renal function in liver transplantation: the ‘ReSpECT’study. Am J Transplant, 2009, 9(2): 327-336.
|
47. |
Boudjema K, Camus C, Saliba F, et al. Reduced-dose tacrolimus with mycophenolate mofetil vs. standard-dose tacrolimus in liver transplantation:a randomized study. Am J Transplant, 2011, 11(5): 965-976.
|
48. |
De Simone P, Nevens F, De Carlis L, et al. Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. Am J Transplant, 2012, 12(11): 3008-3020.
|
49. |
Li X, Liu C, Mao Z, et al. Timing of renal replacement therapy initiation for acute kidney injury in critically ill patients: a systematic review of randomized clinical trials with meta-analysis and trial sequential analysis. Crit Care, 2021, 25(1): 15. doi: 10.1186/s13054-020-03451-y.
|
50. |
STARRT-AKI Investigators, Canadian Critical Care Trials Group, Australian and New Zealand Intensive Care Society Clinical Trials Group, et al. Timing of initiation of renal-replacement therapy in acute kidney injury. N Engl J Med, 2020, 383(3): 240-251.
|
51. |
Ren A, Li Z, Zhang X, et al. Optimal timing of initiating CRRT in patients with acute kidney injury after liver transplantation. Ann Transl Med, 2020, 8(21): 1361. doi: 10.21037/atm-20-2352.
|