1. |
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet, 2020, 395(10219): 200-211.
|
2. |
Cohen J, Vincent JL, Adhikari NK, et al. Sepsis: a roadmap for future research. Lancet Infect Dis, 2015, 15(5): 581-614.
|
3. |
Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell, 2012, 148(6): 1145-1159.
|
4. |
van der Poll T, van de Veerdonk FL, Scicluna BP, et al. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol, 2017, 17(7): 407-420.
|
5. |
Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet, 2002, 360(9328): 219-223.
|
6. |
Rittirsch D, Huber-Lang MS, Flierl MA, et al. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc, 2009, 4(1): 31-36.
|
7. |
Mohr A, Polz J, Martin EM, et al. Sepsis leads to a reduced antigen-specific primary antibody response. Eur J Immunol, 2012, 42(2): 341-352.
|
8. |
Ding Q, Qi Y, Tsang SY. Mitochondrial biogenesis, mitochondrial dynamics, and mitophagy in the maturation of cardiomyocytes. Cells, 2021, 10(9): 2463. doi: 10.3390/cells10092463.
|
9. |
Pak ES, Uddin MJ, Ha H. Inhibition of Src family kinases ameliorates LPS-induced acute kidney injury and mitochondrial dysfunction in mice. Int J Mol Sci, 2020, 21(21): 8246. doi: 10.3390/ijms21218246.
|
10. |
Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182): 1069-1075.
|
11. |
Stanzani G, Duchen MR, Singer M. The role of mitochondria in sepsis-induced cardiomyopathy. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(4): 759-773.
|
12. |
Wang Y, Zhang X, Wen Y, et al. Endoplasmic reticulum-mitochondria contacts: a potential therapy target for cardiovascular remodeling-associated diseases. Front Cell Dev Biol, 2021, 9: 774989. doi: 10.3389/fcell.2021.774989.
|
13. |
Yin X, Xin H, Mao S, et al. The role of autophagy in sepsis: protection and injury to organs. Front Physiol, 2019, 10: 1071. doi: 10.3389/fphys.2019.01071.
|
14. |
Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell, 2016, 166(2): 288-298.
|
15. |
Jin M, Liu X, Klionsky DJ. SnapShot: selective autophagy. Cell, 2013, 152(1-2): 368-368. e2. doi:10.1016/j.cell.2013.01.004.
|
16. |
Romanello V, Sandri M. The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass. Cell Mol Life Sci, 2021, 78(4): 1305-1328.
|
17. |
Liu R, Wang SC, Li M, et al. Erratum to “An inhibitor of DRP1 (Mdivi-1) alleviates LPS-induced septic AKI by inhibiting NLRP3 inflammasome activation”. Biomed Res Int, 2020, 2020: 8493938. doi: 10.1155/2020/8493938.
|
18. |
Huang H, Xu C, Wang Y, et al. Lethal (3) malignant brain tumor-like 2 (L3MBTL2) protein protects against kidney injury by inhibiting the DNA damage-p53-apoptosis pathway in renal tubular cells. Kidney Int, 2018, 93(4): 855-870.
|
19. |
Wang Y, Zhu J, Liu Z, et al. The PINK1/PARK2/optineurin pathway of mitophagy is activated for protection in septic acute kidney injury. Redox Biol, 2021, 38: 101767. doi: 10.1016/j.redox.2020.101767.
|
20. |
Alissafi T, Kalafati L, Lazari M, et al. Mitochondrial oxidative damage underlies regulatory T cell defects in autoimmunity. Cell Metab, 2020, 32(4): 591-604.
|
21. |
Yoo JY, Cha DR, Kim B, et al. LPS-induced acute kidney injury is mediated by Nox4-SH3YL1. Cell Rep, 2020, 33(3): 108245. doi: 10.1016/j.celrep.2020.108245.
|
22. |
Lu QB, Du Q, Wang HP, et al. Salusin-β mediates tubular cell apoptosis in acute kidney injury: involvement of the PKC/ROS signaling pathway. Redox Biol, 2020, 30: 101411. doi: 10.1016/j.redox.2019.101411.
|
23. |
Larrouyet-Sarto ML, Tamura AS, Alves VS, et al. P2X7 receptor deletion attenuates oxidative stress and liver damage in sepsis. Purinergic Signal, 2020, 16(4): 561-572.
|
24. |
Díaz-Quintana A, Pérez-Mejías G, Guerra-Castellano A, et al. Wheel and deal in the mitochondrial inner membranes: the tale of cytochrome c and cardiolipin. Oxid Med Cell Longev, 2020, 2020: 6813405. doi: 10.1155/2020/6813405.
|
25. |
Uddin MJ, Jeong J, Pak ES, et al. CO-releasing molecule-2 prevents acute kidney injury through suppression of ROS-Fyn-ER stress signaling in mouse model. Oxid Med Cell Longev, 2021, 2021: 9947772. doi: 10.1155/2021/9947772.
|
26. |
Lin Q, Li S, Jiang N, et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol, 2019, 26: 101254. doi: 10.1016/j.redox.2019.101254.
|
27. |
Hukriede NA, Soranno DE, Sander V, et al. Experimental models of acute kidney injury for translational research. Nat Rev Nephrol, 2022, 18(5): 277-293.
|
28. |
Saadeh K, Fazmin IT. Mitochondrial dysfunction increases arrhythmic triggers and substrates; potential anti-arrhythmic pharmacological targets. Front Cardiovasc Med, 2021, 8: 646932. doi: 10.3389/fcvm.2021.646932.
|
29. |
Jin YH, Li ZT, Chen H, et al. Effect of dexmedetomidine on kidney injury in sepsis rats through TLR4/MyD88/NF-κB/iNOS signaling pathway. Eur Rev Med Pharmacol Sci, 2019, 23(11): 5020-5025.
|
30. |
Carraro M, Carrer A, Urbani A, et al. Molecular nature and regulation of the mitochondrial permeability transition pore(s), drug target(s) in cardioprotection. J Mol Cell Cardiol, 2020, 144: 76-86.
|
31. |
Kumar S, Ashraf R, C K A. Mitochondrial dynamics regulators: implications for therapeutic intervention in cancer. Cell Biol Toxicol, 2021 Oct 18. doi: 10.1007/s10565-021-09662-5.
|
32. |
Teixeira J, Basit F, Willems PHGM, et al. Mitochondria-targeted phenolic antioxidants induce ROS-protective pathways in primary human skin fibroblasts. Free Radic Biol Med, 2021, 163: 314-324.
|
33. |
Federico M, De la Fuente S, Palomeque J, et al. The role of mitochondria in metabolic disease: a special emphasis on heart dysfunction. J Physiol, 2021, 599(14): 3477-3493.
|
34. |
Morciano G, Naumova N, Koprowski P, et al. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc, 2021, 96(6): 2489-2521.
|
35. |
Nadalutti CA, Ayala-Peña S, Santos JH. Mitochondrial DNA damage as driver of cellular outcomes. Am J Physiol Cell Physiol, 2022, 322(2): C136-C150. doi: 10.1152/ajpcell.00389.2021.
|
36. |
Liu X, Shan G. Mitochondria encoded non-coding RNAs in cell physiology. Front Cell Dev Biol, 2021, 9: 713729. doi: 10.3389/fcell.2021.713729.
|
37. |
Han Y, Cai Y, Lai X, et al. lncRNA RMRP prevents mitochondrial dysfunction and cardiomyocyte apoptosis via the miR-1-5p/hsp70 axis in LPS-induced sepsis mice. Inflammation, 2020, 43(2): 605-618.
|
38. |
Shan B, Li JY, Liu YJ, et al. LncRNA H19 inhibits the progression of sepsis-induced myocardial injury via regulation of the miR-93-5p/SORBS2 axis. Inflammation, 2021, 44(1): 344-357.
|