1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Janevska D, Chaloska-Ivanova V, Janevski V. Hepatocellular carcinoma: risk factors, diagnosis and treatment. Open Access Maced J Med Sci, 2015, 3(4): 732-736.
|
3. |
Gu CY, Lee TKW. Preclinical mouse models of hepatocellular carcinoma: An overview and update. Exp Cell Res, 2022, 412(2): 113042. doi: 10.1016/j.yexcr.2022.113042.
|
4. |
夏猛, 孙玉浩, 王萌, 等. 原发性肝癌常见动物模型的研究进展. 临床肝胆病杂志, 2021, 37(8): 1938-1942.
|
5. |
Uehara T, Pogribny IP, Rusyn I. The DEN and CCl4-induced mouse model of fibrosis and inflammation-associated hepatocellular carcinoma. Curr Protoc, 2021, 1(8): e211. doi: 10.1002/cpz1.211.
|
6. |
Macek Jilkova Z, Kurma K, Decaens T. Animal models of hepatocellular carcinoma: the role of immune system and tumor microenvironment. Cancers (Basel), 2019, 11(10): 1487. doi: 10.3390/cancers11101487.
|
7. |
Zhang HE, Henderson JM, Gorrell MD. Animal models for hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(5): 993-1002.
|
8. |
Henderson JM, Polak N, Chen J, et al. Multiple liver insults synergize to accelerate experimental hepatocellular carcinoma. Sci Rep, 2018, 8(1): 10283. doi: 10.1038/s41598-018-28486-8.
|
9. |
Xin B, Cui Y, Wang Y, et al. Combined use of alcohol in conventional chemical-induced mouse liver cancer model improves the simulation of clinical characteristics of human hepatocellular carcinoma. Oncol Lett, 2017, 14(4): 4722-4728.
|
10. |
Yan J, Caviglia JM, Schwabe RF. Animal models of HCC—When injury meets mutation. J Hepatol, 2017, S0168-8278(17)32197-9. doi: 10.1016/j.jhep.2017.07.023.
|
11. |
吕建军, 李耀庭, 周舒雅, 等. 建立原代小鼠肝细胞体外模型用于致癌物作用机制研究. 药物分析杂志, 2016, 36(10): 1785-1797.
|
12. |
Blidisel A, Marcovici I, Coricovac D, et al. Experimental models of hepatocellular carcinoma-a preclinical perspective. Cancers (Basel), 2021, 13(15): 3651. doi: 10.3390/cancers13153651.
|
13. |
Romualdo GR, Prata GB, da Silva TC, et al. Fibrosis-associated hepatocarcinogenesis revisited: Establishing standard medium-term chemically-induced male and female models. PLoS One, 2018, 13(9): e0203879. doi: 10.1371/journal.pone.0203879.
|
14. |
Ding YF, Wu ZH, Wei YJ, et al. Hepatic inflammation-fibrosis-cancer axis in the rat hepatocellular carcinoma induced by diethylnitrosamine. J Cancer Res Clin Oncol, 2017, 143(5): 821-834.
|
15. |
Lee JS, Chu IS, Mikaelyan A, et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet, 2004, 36(12): 1306-1311.
|
16. |
Dow M, Pyke RM, Tsui BY, et al. Integrative genomic analysis of mouse and human hepatocellular carcinoma. Proc Natl Acad Sci U S A, 2018, 115(42): E9879-E9888. doi: 10.1073/pnas.1811029115.
|
17. |
Connor F, Rayner TF, Aitken SJ, et al. Mutational landscape of a chemically-induced mouse model of liver cancer. J Hepatol, 2018, 69(4): 840-850.
|
18. |
Schulien I, Hasselblatt P. Diethylnitrosamine-induced liver tumorigenesis in mice. Methods Cell Biol, 2021, 163: 137-152.
|
19. |
Qi X, Schepers E, Avella D, et al. An oncogenic hepatocyte-induced orthotopic mouse model of hepatocellular cancer arising in the setting of hepatic inflammation and fibrosis. J Vis Exp, 2019, (151): 10.3791/59368. doi: 10.3791/59368.
|
20. |
Ju HL, Han KH, Lee JD, et al. Transgenic mouse models generated by hydrodynamic transfection for genetic studies of liver cancer and preclinical testing of anti-cancer therapy. Int J Cancer, 2016, 138(7): 1601-1608.
|
21. |
Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol, 2018, 15(9): 536-554.
|
22. |
Nakayama J, Gong Z. Transgenic zebrafish for modeling hepatocellular carcinoma. MedComm (2020), 2020, 1(2): 140-156.
|
23. |
Nakayama J, Lu JW, Makinoshima H, et al. A novel zebrafish model of metastasis identifies the HSD11β1 inhibitor adrenosterone as a suppressor of epithelial-mesenchymal transition and metastatic dissemination. Mol Cancer Res, 2020, 18(3): 477-487.
|
24. |
Lee AQ, Li Y, Gong Z. Inducible liver cancer models in transgenic zebrafish to investigate cancer biology. Cancers (Basel), 2021, 13(20): 5148. doi: 10.3390/cancers13205148.
|
25. |
Nakayama J, Makinoshima H. Zebrafish-based screening models for the identification of anti-metastatic drugs. Molecules, 2020, 25(10): 2407. doi: 10.3390/molecules25102407.
|
26. |
Wrighton PJ, Oderberg IM, Goessling W. There is something fishy about liver cancer: zebrafish models of hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol, 2019, 8(3): 347-363.
|
27. |
Cigliano A, Pilo MG, Li L, et al. Deregulated c-Myc requires a functional HSF1 for experimental and human hepatocarcinogenesis. Oncotarget, 2017, 8(53): 90638-90650.
|
28. |
Liu YT, Tseng TC, Soong RS, et al. A novel spontaneous hepatocellular carcinoma mouse model for studying T-cell exhaustion in the tumor microenvironment. J Immunother Cancer, 2018, 6(1): 144. doi: 10.1186/s40425-018-0462-3.
|
29. |
Kersten K, de Visser KE, van Miltenburg MH, et al. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med, 2017, 9(2): 137-153.
|
30. |
Hassan SA, Schmithals C, von Harten M, et al. Time-dependent changes in proliferation, DNA damage and clock gene expression in hepatocellular carcinoma and healthy liver of a transgenic mouse model. Int J Cancer, 2021, 148(1): 226-237.
|
31. |
Cho K, Ro SW, Seo SH, et al. Genetically engineered mouse models for liver cancer. Cancers (Basel), 2019, 12(1): 14. doi: 10.3390/cancers12010014.
|
32. |
Chung SI, Moon H, Kim DY, et al. Development of a transgenic mouse model of hepatocellular carcinoma with a liver fibrosis background. BMC Gastroenterol, 2016, 16: 13. doi: 10.1186/s12876-016-0423-6.
|
33. |
Li E, Lin L, Chen CW, et al. Mouse models for immunotherapy in hepatocellular carcinoma. Cancers (Basel), 2019, 11(11): 1800. doi: 10.3390/cancers11111800.
|
34. |
雷会霞, 苗明三. 基于数据挖掘的肝癌动物模型应用分析. 中药药理与临床, 2022, 38(3): 186-190.
|
35. |
Bresnahan E, Ramadori P, Heikenwalder M, et al. Novel patient-derived preclinical models of liver cancer. J Hepatol, 2020, 72(2): 239-249.
|
36. |
罗晓琴, 丁冠茗, 郑旭, 等. 小鼠肝癌原位移植性肿瘤动物模型的改良. 中国比较医学杂志, 2021, 31(6): 16-22.
|
37. |
Wu T, Heuillard E, Lindner V, et al. Multimodal imaging of a humanized orthotopic model of hepatocellular carcinoma in immunodeficient mice. Sci Rep, 2016, 6: 35230. doi: 10.1038/srep35230.
|
38. |
Kim KJ, Kim JH, Lee SJ, et al. Radiation improves antitumor effect of immune checkpoint inhibitor in murine hepatocellular carcinoma model. Oncotarget, 2017, 8(25): 41242-41255.
|
39. |
朱瑞敏, 李宝亮, 路亚岚, 等. 肝细胞癌原位与皮下PDX模型的方法学比较分析研究. 中国实验动物学报, 2021, 29(4): 512-518.
|
40. |
卢东诚, 覃沁怡, 雷荣娥, 等. 尾静脉注射法建立胰腺癌血行转移小鼠动物模型. 广东医学, 2018, 39(18): 2732-2736, 2740.
|
41. |
Bresnahan E, Lindblad KE, Ruiz de Galarreta M, et al. Mouse models of oncoimmunology in hepatocellular carcinoma. Clin Cancer Res, 2020, 26(20): 5276-5286.
|
42. |
Ou DL, Lin YY, Hsu CL, et al. Development of a PD-L1-expressing orthotopic liver cancer model: implications for immunotherapy for hepatocellular carcinoma. Liver Cancer, 2019, 8(3): 155-171.
|
43. |
Zhao W, Zhang L, Xu Y, et al. Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab Invest, 2014, 94(2): 182-191.
|
44. |
Romualdo GR, Leroy K, Costa CJS, et al. In vivo and in vitro models of hepatocellular carcinoma: current strategies for translational modeling. Cancers (Basel), 2021, 13(21): 5583. doi: 10.3390/cancers13215583.
|
45. |
Xu W, Zhao ZY, An QM, et al. Comprehensive comparison of patient-derived xenograft models in hepatocellular carcinoma and metastatic liver cancer. Int J Med Sci, 2020, 17(18): 3073-3081.
|
46. |
Wu Y, Wang J, Zheng X, et al. Establishment and preclinical therapy of patient-derived hepatocellular carcinoma xenograft model. Immunol Lett, 2020, 223: 33-43.
|
47. |
Blumer T, Fofana I, Matter MS, et al. Hepatocellular carcinoma xenografts established from needle biopsies preserve the characteristics of the originating tumors. Hepatol Commun, 2019, 3(7): 971-986.
|
48. |
Gao H, Korn JM, Ferretti S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med, 2015, 21(11): 1318-1325.
|
49. |
Morton JJ, Bird G, Refaeli Y, et al. Humanized mouse xenograft models: narrowing the tumor-microenvironment gap. Cancer Res, 2016, 76(21): 6153-6158.
|
50. |
Choi Y, Lee S, Kim K, et al. Studying cancer immunotherapy using patient-derived xenografts (PDXs) in humanized mice. Exp Mol Med, 2018, 50(8): 1-9.
|
51. |
Cogels MM, Rouas R, Ghanem GE, et al. Humanized mice as a valuable pre-clinical model for cancer immunotherapy research. Front Oncol, 2021, 11: 784947. doi: 10.3389/fonc.2021.784947.
|
52. |
Jin KT, Du WL, Lan HR, et al. Development of humanized mouse with patient-derived xenografts for cancer immunotherapy studies: A comprehensive review. Cancer Sci, 2021, 112(7): 2592-2606.
|
53. |
Yaguchi T, Kobayashi A, Inozume T, et al. Human PBMC-transferred murine MHC class Ⅰ/Ⅱ-deficient NOG mice enable long-term evaluation of human immune responses. Cell Mol Immunol, 2018, 15(11): 953-962.
|