1. |
俞婷, 谢珉宁, 陈兴华, 等. 上海金山区痔病发作的流行病学特点研究. 湖南中医杂志, 2021, 37(4): 123-126.
|
2. |
Ng KS, Holzgang M, Young C. Still a case of “No Pain, No Gain”? An updated and critical review of the pathogenesis, diagnosis, and management options for hemorrhoids in 2020. Ann Coloproctol, 2020, 36(3): 133-147.
|
3. |
Rubbini M, Ascanelli S. Classification and guidelines of hemorrhoidal disease: present and future. World J Gastrointest Surg, 2019, 11(3): 117-121.
|
4. |
Thomson WH. The nature of haemorrhoids. Br J Surg, 1975, 62(7): 542-552.
|
5. |
Gass OC, Adams J. Hemorrhoids: etiology and pathology. Am J Surg, 1950, 79(1): 40-43.
|
6. |
张翔, 白景舒. 痔发病机制诊断和治疗概述. 中国肛肠病杂志, 2019, 39(9): 72-74.
|
7. |
Mondal S, Adhikari N, Banerjee S, et al. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: a minireview. Eur J Med Chem, 2020, 194: 112260. doi: 10.1016/j.ejmech.2020.112260.
|
8. |
秦蕾, 秦鑫. MMP-9、VEGFR2因子在内痔患者组织中的表达及意义. 中国细胞生物学学报, 2020, 42(10): 1800-1805.
|
9. |
戴浩. 十全育真汤加减对脱垂性内痔组织中MMP-7、MMP-9的影响. 呼和浩特: 内蒙古医科大学, 2020.
|
10. |
Serra R, Gallelli L, Grande R, et al. Hemorrhoids and matrix metalloproteinases: a multicenter study on the predictive role of biomarkers. Surgery, 2016, 159(2): 487-494.
|
11. |
Yang H, Chen H, Liu F, et al. Up-regulation of matrix metalloproteinases-9 in the kidneys of diabetic rats and the association with neutrophil gelatinase-associated lipocalin. BMC Nephrol, 2021, 22(1): 211. doi: 10.1186/s12882-021-02396-w.
|
12. |
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res, 2006, 69(3): 562-573.
|
13. |
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci, 2020, 21(24): 9739. doi: 10.3390/ijms21249739.
|
14. |
Li SL, Jing FY, Ma LL, et al. Myofibrotic malformation vessels: unique angiodysplasia toward the progression of hemorrhoidal disease. Drug Des Devel Ther, 2015, 9: 4649-4656.
|
15. |
冯大勇, 王春晖, 冯月宁, 等. 从细胞因子生物学角度探讨痔的发病机制. 中国医刊, 2016, 51(3): 28-30.
|
16. |
Wang H, Wang L, Xie Z, et al. Nitric oxide (NO) and NO synthases (NOS)-based targeted therapy for colon cancer. Cancers (Basel), 2020, 12(7): 1881. doi: 10.3390/cancers12071881.
|
17. |
Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev, 1991, 43(2): 109-142.
|
18. |
韩炜, 王振军, 赵博, 等. 痔组织弹性纤维退变和血管生成的机制及其意义. 中华胃肠外科杂志, 2005, 8(1): 56-59.
|
19. |
Lohsiriwat V, Wilson VG, Scholefield JH, et al. Regional distribution of nitric oxide synthase in human anorectal tissue: a pilot study on the potential role for nitric oxide in haemorrhoids. Curr Vasc Pharmacol, 2020, 18(1): 43-49.
|
20. |
Gokce AH, Gokce FS, Durmus S, et al. The effect of nitric oxide, endothelial nitric oxide synthetase, and asymmetric dimethylarginine in hemorrhoidal disease. Rev Assoc Med Bras (1992), 2020, 66(8): 1128-1133.
|
21. |
di Mola FF, Friess H, Köninger J, et al. Haemorrhoids and transient receptor potential vanilloid 1. Gut, 2006, 55(11): 1665-1666.
|
22. |
Varela-López E, Del Valle-Mondragón L, Castrejón-Téllez V, et al. Role of the transient receptor potential vanilloid type 1 (TRPV1) in the regulation of nitric oxide release in Wistar rat aorta. Oxid Med Cell Longev, 2021, 2021: 8531975. doi: 10.1155/2021/8531975.
|
23. |
Correia de Sousa M, Gjorgjieva M, Dolicka D, et al. Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci, 2019, 20(24): 6249. doi: 10.3390/ijms20246249.
|
24. |
Song C, Zhou H, Lu H, et al. Aberrant expression for microRNA is potential crucial factors of haemorrhoid. Hereditas, 2020, 157(1): 25. doi: 10.1186/s41065-020-00139-9.
|
25. |
Wang C, Lu H, Luo C, et al. miR-412-5p targets Xpo1 to regulate angiogenesis in hemorrhoid tissue. Gene, 2019, 705: 167-176.
|
26. |
Liu T, Zhou H, Lu H, et al. MiR-4729 regulates TIE1 mRNA m6A modification and angiogenesis in hemorrhoids by targeting METTL14. Ann Transl Med, 2021, 9(3): 232. doi: 10.21037/atm-20-3399.
|
27. |
Karaman S, Leppänen VM, Alitalo K. Vascular endothelial growth factor signaling in development and disease. Development, 2018, 145(14): dev151019. doi: 10.1242/dev.151019.
|
28. |
Okada-Ban M, Thiery JP, Jouanneau J. Fibroblast growth factor-2. Int J Biochem Cell Biol, 2000, 32(3): 263-267.
|
29. |
朱华锋, 汪春兰, 赵宇. VEGF和FGF-2在血管生成中的协同作用研究进展. 中华整形外科杂志, 2006, 22(1): 72-75.
|
30. |
梁文龙, 曹杰, 杨平, 等. 血管内皮生长因子受体2在痔黏膜中的分布特征及临床意义. 实用医学杂志, 2015, 31(17): 2830-2832.
|
31. |
王琪, 经芳艳, 邓永键. 内痔粘膜及血管上皮细胞VEGF/FGF2的表达与内痔分期的相关性分析. 中国临床解剖学杂志, 2019, 37(4): 409-413.
|
32. |
Porwal A, Kundu GC, Bhagwat G, et al. Polyherbal formulation Anoac-H suppresses the expression of RANTES and VEGF for the management of bleeding hemorrhoids and fistula. Mol Med Rep, 2021, 24(4): 736. doi: 10.3892/mmr.2021.12376.
|
33. |
刘史佳, 申龙树, 戴国梁, 等. IL-17、IL-6、TNF-α细胞因子在痔疮患者中的表达. 药学与临床研究, 2016, 24(3): 201-204.
|
34. |
朱志红, 曹莫寒, 王志民, 等. 痔脱垂组织中TNF-α、IL-1β、IFN-γ表达和Treitz肌形态及密度变化的研究. 中国现代普通外科进展, 2021, 24(10): 791-795.
|
35. |
孙松朋, 龙俊红, 张书信. 痔病患者显微镜下痔组织出血情况及其影响因素研究. 中国全科医学, 2020, 23(33): 4190-4195.
|
36. |
石健宇, 王相龙. 内痔患者血凝情况改变的相关性研究. 中国肛肠病杂志, 2020, 40(12): 78.
|
37. |
Hashempur MH, Khademi F, Rahmanifard M, et al. An evidence-based study on medicinal plants for hemorrhoids in medieval Persia. J Evid Based Complementary Altern Med, 2017, 22(4): 969-981.
|