1. |
Miranda-Filho A, Lortet-Tieulent J, Bray F, et al. Thyroid cancer incidence trends by histology in 25 countries: a population-based study. Lancet Diabetes Endocrinol, 2021, 9(4): 225-234.
|
2. |
Vaccarella S, Lortet-Tieulent J, Colombet M, et al. Global patterns and trends in incidence and mortality of thyroid cancer in children and adolescents: a population-based study. Lancet Diabetes Endocrinol, 2021, 9(3): 144-152.
|
3. |
Laha D, Nilubol N, Boufraqech M. New therapies for advanced thyroid cancer. Front Endocrinol (Lausanne), 2020, 11: 82. doi: 10.3389/fendo.2020.00082.
|
4. |
Aoki M, Fujishita T. Oncogenic roles of the PI3K/AKT/mTOR axis. Curr Top Microbiol Immunol, 2017, 407: 153-189.
|
5. |
Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, et al. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol, 2010, 11(5): 329-341.
|
6. |
Vasudevan KM, Garraway LA. AKT signaling in physiology and disease. Curr Top Microbiol Immunol, 2010, 347: 105-133.
|
7. |
Álvarez-Garcia V, Tawil Y, Wise HM, et al. Mechanisms of PTEN loss in cancer: it’s all about diversity. Semin Cancer Biol, 2019, 59: 66-79.
|
8. |
Bunney TD, Katan M. Phosphoinositide signalling in cancer: beyond PI3K and PTEN. Nat Rev Cancer, 2010, 10(5): 342-352.
|
9. |
Wei X, Luo L, Chen J. Roles of mTOR signaling in tissue regeneration. Cells, 2019, 8(9): 1075. doi: 10.3390/cells8091075.
|
10. |
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell, 2012, 149(2): 274-293.
|
11. |
Bhat M, Robichaud N, Hulea L, et al. Targeting the translation machinery in cancer. Nat Rev Drug Discov, 2015, 14(4): 261-278.
|
12. |
Xing YQ, Li A, Yang Y, et al. The regulation of FOXO1 and its role in disease progression. Life Sci, 2018, 193: 124-131.
|
13. |
Ma Z, Xin Z, Hu W, et al. Forkhead box O proteins: crucial regulators of cancer EMT. Semin Cancer Biol, 2018, 50: 21-31.
|
14. |
Chen C, Luo Y, Su Y, et al. The vitamin D receptor (VDR) protects pancreatic beta cells against Forkhead box class O1 (FOXO1)-induced mitochondrial dysfunction and cell apoptosis. Biomed Pharmacother, 2019, 117: 109170. doi: 10.1016/j.biopha.2019.109170.
|
15. |
Wang J, Shen L, Hong H, et al. Atrasentan alleviates high glucose-induced podocyte injury by the microRNA-21/forkhead box O1 axis. Eur J Pharmacol, 2019, 852: 142-150.
|
16. |
Lu H, Chen S, You Z, et al. PFKFB4 negatively regulated the expression of histone acetyltransferase GCN5 to mediate the tumorigenesis of thyroid cancer. Dev Growth Differ, 2020, 62(2): 129-138.
|
17. |
Zhao WJ, Zhu LL, Yang WQ, et al. LPAR5 promotes thyroid carcinoma cell proliferation and migration by activating class ⅠA PI3K catalytic subunit p110β. Cancer Sci, 2021, 112(4): 1624-1632.
|
18. |
Li D, Yang Y, Chen B, et al. MOF regulates TNK2 transcription expression to promote cell proliferation in thyroid cancer. Front Pharmacol, 2020, 11: 607605. doi: 10.3389/fphar.2020.607605.
|
19. |
Su X, Chen D, Zhu L, et al. SGSM2 inhibits thyroid cancer progression by activating RAP1 and enhancing competitive RAS inhibition. Cell Death Dis, 2022, 13(3): 218. doi: 10.1038/s41419-022-04598-y.
|
20. |
Chang F, Xing P, Song F, et al. The role of T-box genes in the tumorigenesis and progression of cancer. Oncol Lett, 2016, 12(6): 4305-4311.
|
21. |
Wang N, Li Y, Wei J, et al. TBX1 functions as a tumor suppressor in thyroid cancer through inhibiting the activities of the PI3K/AKT and MAPK/ERK pathways. Thyroid, 2019, 29(3): 378-394.
|
22. |
Xia W, Jie W. ZEB1-AS1/miR-133a-3p/LPAR3/EGFR axis promotes the progression of thyroid cancer by regulating PI3K/AKT/mTOR pathway. Cancer Cell Int, 2020, 20: 94. doi: 10.1186/s12935-020-1098-1.
|
23. |
Yang T, Zhai H, Yan R, et al. lncRNA CCAT1 promotes cell proliferation, migration, and invasion by down-regulation of miR-143 in FTC-133 thyroid carcinoma cell line. Braz J Med Biol Res, 2018, 51(6): e7046. doi: 10.1590/1414-431x20187046.
|
24. |
No authors listed. Retraction notice for: “lncRNA CCAT1 promotes cell proliferation, migration, and invasion by down-regulation of miR-143 in FTC-133 thyroid carcinoma cell line” [Braz J Med Biol Res (2018) 51(6): e7046]. Braz J Med Biol Res, 2021, 54(6): e7046retraction. doi: 10.1590/1414-431X2020e7046retraction.
|
25. |
Li J, Zhang Z, Hu J, et al. MiR-1246 regulates the PI3K/AKT signaling pathway by targeting PIK3AP1 and inhibits thyroid cancer cell proliferation and tumor growth. Mol Cell Biochem, 2022, 477(3): 649-661.
|
26. |
Du P, Liu F, Liu Y, et al. Linc00210 enhances the malignancy of thyroid cancer cells by modulating miR-195-5p/IGF1R/Akt axis. J Cell Physiol, 2020, 235(2): 1001-1012.
|
27. |
Min X, Liu K, Zhu H, et al. Long noncoding RNA LINC003121 inhibits proliferation and invasion of thyroid cancer cells by suppression of the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. Med Sci Monit, 2018, 24: 4592-4601.
|
28. |
Liu H, Deng H, Zhao Y, et al. LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin Cancer Res, 2018, 37(1): 279. doi: 10.1186/s13046-018-0950-9.
|
29. |
Chen L, Zhuo D, Yuan H. Circ_100395 impedes malignancy and glycolysis in papillary thyroid cancer: involvement of PI3K/AKT/mTOR signaling pathway. Immunol Lett, 2022, 246: 10-17.
|
30. |
Li Z, Huang X, Liu A, et al. Circ_PSD3 promotes the progression of papillary thyroid carcinoma via the miR-637/HEMGN axis. Life Sci, 2021, 264: 118622. doi: 10.1016/j.lfs.2020.118622.
|
31. |
Zhao J, Li Z, Chen Y, et al. MicroRNA-766 inhibits papillary thyroid cancer progression by directly targeting insulin receptor substrate 2 and regulating the PI3K/Akt pathway. Int J Oncol, 2019, 54(1): 315-325.
|
32. |
Zheng T, Zhou Y, Xu X, et al. MiR-30c-5p loss-induced PELI1 accumulation regulates cell proliferation and migration via activating PI3K/AKT pathway in papillary thyroid carcinoma. J Transl Med, 2022, 20(1): 20. doi: 10.1186/s12967-021-03226-1.
|
33. |
Han M, Chen L, Wang Y. miR-218 overexpression suppresses tumorigenesis of papillary thyroid cancer via inactivation of PTEN/PI3K/AKT pathway by targeting Runx2. Onco Targets Ther, 2018, 11: 6305-6316.
|
34. |
Arioka M, Takahashi-Yanaga F. Glycogen synthase kinase-3 inhibitor as a multi-targeting anti-rheumatoid drug. Biochem Pharmacol, 2019, 165: 207-213.
|
35. |
Gao YT, Zhou YC. Long non-coding RNA (lncRNA) small nucleolar RNA host gene 7 (SNHG7) promotes breast cancer progression by sponging miRNA-381. Eur Rev Med Pharmacol Sci, 2019, 23(15): 6588-6595.
|
36. |
Yao X, Liu C, Liu C, et al. lncRNA SNHG7 sponges miR-425 to promote proliferation, migration, and invasion of hepatic carcinoma cells via Wnt/β-catenin/EMT signalling pathway. Cell Biochem Funct, 2019, 37(7): 525-533.
|
37. |
Chen W, Yu J, Xie R, et al. Roles of the SNHG7/microRNA-9-5p/DPP4 ceRNA network in the growth and 131I resistance of thyroid carcinoma cells through PI3K/Akt activation. Oncol Rep, 2021, 45(4): 3. doi: 10.3892/or.2021.7954.
|
38. |
Wen J, Wang H, Dong T, et al. STAT3-induced upregulation of lncRNA ABHD11-AS1 promotes tumour progression in papillary thyroid carcinoma by regulating miR-1301-3p/STAT3 axis and PI3K/AKT signalling pathway. Cell Prolif, 2019, 52(2): e12569. doi: 10.1111/cpr.12569.
|
39. |
Zhang J, Du Y, Zhang X, et al. Downregulation of BANCR promotes aggressiveness in papillary thyroid cancer via the MAPK and PI3K pathways. J Cancer, 2018, 9(7): 1318-1328.
|
40. |
Zhao M, Yang F, Sang C, et al. BGL3 inhibits papillary thyroid carcinoma progression via regulating PTEN stability. J Endocrinol Invest, 2021, 44(10): 2165-2174.
|
41. |
Pratakpiriya W, Seki F, Otsuki N, et al. Nectin4 is an epithelial cell receptor for canine distemper virus and involved in neurovirulence. J Virol, 2012, 86(18): 10207-10210.
|
42. |
Hao RT, Zheng C, Wu CY, et al. NECTIN4 promotes papillary thyroid cancer cell proliferation, migration, and invasion and triggers EMT by activating AKT. Cancer Manag Res, 2019, 11: 2565-2578.
|
43. |
Kang JH, Park JH, Kong JS, et al. PINX1 promotes malignant transformation of thyroid cancer through the activation of the AKT/MAPK/β-catenin signaling pathway. Am J Cancer Res, 2021, 11(11): 5485-5495.
|
44. |
Dong X, Akuetteh PDP, Song J, et al. Major Vault protein (MVP) associated with BRAFV600E mutation is an immune microenvironment-related biomarker promoting the progression of papillary thyroid cancer via MAPK/ERK and PI3K/AKT pathways. Front Cell Dev Biol, 2022, 9: 688370. doi: 10.3389/fcell.2021.688370.
|
45. |
Yang J, Ying Y, Zeng X, et al. Transcription factor E2F1 exacerbates papillary thyroid carcinoma cell growth and invasion via upregulation of LINC00152. Anal Cell Pathol (Amst), 2022, 2022: 7081611. doi: 10.1155/2022/7081611.
|
46. |
Wang Y, Wang C, Fu Z, et al. miR-30b-5p inhibits proliferation, invasion, and migration of papillary thyroid cancer by targeting GALNT7 via the EGFR/PI3K/AKT pathway. Cancer Cell Int, 2021, 21(1): 618. doi: 10.1186/s12935-021-02323-x.
|
47. |
Wang K, Chai L, Qiu Z, et al. Overexpression of TRIM26 suppresses the proliferation, metastasis, and glycolysis in papillary thyroid carcinoma cells. J Cell Physiol, 2019, 234(10): 19019-19027.
|
48. |
Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 1999, 399(6733): 271-275.
|
49. |
Zang C, Sun J, Liu W, et al. miRNA-21 promotes cell proliferation and invasion via VHL/PI3K/AKT in papillary thyroid carcinoma. Hum Cell, 2019, 32(4): 428-436.
|
50. |
Zheng Z, Zhou X, Cai Y, et al. TEKT4 promotes papillary thyroid cancer cell proliferation, colony formation, and metastasis through activating PI3K/Akt pathway. Endocr Pathol, 2018, 29(4): 310-316.
|
51. |
Okafor C, Hogan J, Raygada M, et al. Update on targeted therapy in medullary thyroid cancer. Front Endocrinol (Lausanne), 2021, 12: 708949. doi: 10.3389/fendo.2021.708949.
|
52. |
Galuppini F, Censi S, Moro M, et al. MicroRNAs in medullary thyroid carcinoma: a state of the art review of the regulatory mechanisms and future perspectives. Cells, 2021, 10(4): 955. doi: 10.3390/cells10040955.
|
53. |
Pishkari S, Hadavi R, Koochaki A, et al. Assessment of AXL and mTOR genes expression in medullary thyroid carcinoma (MTC) cell line in relation with over expression of miR-144 and miR-34a. Horm Mol Biol Clin Investig, 2021, 42(3): 265-271.
|
54. |
Liao H, Xiao Y, Hu Y, et al. Methylation-induced silencing of miR-34a enhances chemoresistance by directly upregulating ATG4B-induced autophagy through AMPK/mTOR pathway in prostate cancer. Oncol Rep, 2016, 35(1): 64-72.
|
55. |
Shi L, Zhao SM, Luo Y, et al. MiR-375: a prospective regulator in medullary thyroid cancer based on microarray data and bioinformatics analyses. Pathol Res Pract, 2017, 213(11): 1344-1354.
|
56. |
Shabani N, Razaviyan J, Paryan M, et al. Evaluation of miRNAs expression in medullary thyroid carcinoma tissue samples: miR-34a and miR-144 as promising overexpressed markers in MTC. Hum Pathol, 2018, 79: 212-221.
|
57. |
Shabani N, Sheikholeslami S, Paryan M, et al. An investigation on the expression of miRNAs including miR-144 and miR-34a in plasma samples of RET-positive and RET-negative medullar thyroid carcinoma patients. J Cell Physiol, 2020, 235(2): 1366-1373.
|
58. |
Feng H, Jin Z, Liang J, et al. FOXK2 transcriptionally activating VEGFA induces apatinib resistance in anaplastic thyroid cancer through VEGFA/VEGFR1 pathway. Oncogene, 2021, 40(42): 6115-6129.
|
59. |
Wang P, Shang J, Zhao J, et al. SRY-related HMG box-2 role in anaplastic thyroid cancer aggressiveness is related to the fibronectin 1 and PI3K/AKT pathway. Mol Med Rep, 2020, 21(3): 1201-1207.
|
60. |
Lv J, Liu C, Chen FK, et al. M2-like tumour-associated macrophage-secreted IGF promotes thyroid cancer stemness and metastasis by activating the PI3K/AKT/mTOR pathway. Mol Med Rep, 2021, 24(2): 604. doi: 10.3892/mmr.2021.12249.
|
61. |
Li YH, Xu KC, Huang GM, et al. The function and molecular mechanism of CEP55 in anaplastic thyroid cancer. Eur Rev Med Pharmacol Sci, 2020, 24(18): 9549-9555.
|
62. |
Davidson CD, Bolf EL, Gillis NE, et al. Thyroid hormone receptor beta inhibits PI3K-Akt-mTOR signaling axis in anaplastic thyroid cancer via genomic mechanisms. J Endocr Soc, 2021, 5(8): bvab102. doi: 10.1210/jendso/bvab102.
|
63. |
Qin H, Liu J, Yu M, et al. FUT7 promotes the malignant transformation of follicular thyroid carcinoma through α1, 3-fucosylation of EGF receptor. Exp Cell Res, 2020, 393(2): 112095. doi: 10.1016/j.yexcr.2020.112095.
|
64. |
Barés G, Beà A, Hernández L, et al. ENDOG impacts on tumor cell proliferation and tumor prognosis in the context of PI3K/PTEN pathway status. Cancers (Basel), 2021, 13(15): 3803. doi: 10.3390/cancers13153803.
|
65. |
Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer, 2015, 15(1): 7-24.
|
66. |
Tomar VS, Patil V, Somasundaram K. Temozolomide induces activation of Wnt/β-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol, 2020, 36(3): 273-278.
|
67. |
Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR pathway as a pro-survival signaling and resistance-mediating mechanism to therapy of prostate cancer. Int J Mol Sci, 2021, 22(20): 11088. doi: 10.3390/ijms222011088.
|
68. |
Almaimani RA, Aslam A, Ahmad J, et al. In vivo and in vitro enhanced tumoricidal effects of metformin, active vitamin D 3, and 5-fluorouracil triple therapy against colon cancer by modulating the PI3K/Akt/PTEN/mTOR network. Cancers (Basel), 2022, 14(6): 1538. doi: 10.3390/cancers14061538.
|