1. |
Mederos MA, Reber HA, Girgis MD. Acute pancreatitis: a review. JAMA, 2021, 325(4): 382-390.
|
2. |
Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus. Gut, 2013, 62(1): 102-111.
|
3. |
Phillip V, Schuster T, Hagemes F, et al. Time period from onset of pain to hospital admission and patients' awareness in acute pancreatitis. Pancreas, 2013, 42(4): 647-654.
|
4. |
Buxbaum J, Quezada M, Chong B, et al. The pancreatitis activity scoring system predicts clinical outcomes in acute pancreatitis: findings from a prospective cohort study. Am J Gastroenterol, 2018, 113(5): 755-764.
|
5. |
急性胰腺炎中西医结合诊疗指南. 中国中西医结合学会团体标. T/CAIM 007-202.
|
6. |
Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol, 2020, 180: 114147. doi: 10.1016/j.bcp.2020.114147.
|
7. |
Yekkirala AS, Roberson DP, Bean BP, et al. Breaking barriers to novel analgesic drug development. Nature reviews Drug discovery, 2017, 16(8): 545-564.
|
8. |
Thavanesan N, White S, Lee S, et al. Analgesia in the initial management of acute pancreatitis: a systematic review and meta-analysis of randomised controlled trials. World J Surg, 2022, 46(4): 878-890.
|
9. |
Cai W, Liu F, Wen Y, et al. Pain management in acute pancreatitis: a systematic review and meta-analysis of randomised controlled trials. Front Med (Lausanne), 2021, 8: 782151. doi: 10.3389/fmed.2021.782151.
|
10. |
Drewes AM, Olesen AE, Farmer AD, et al. Gastrointestinal pain. Nat Rev Dis Primers, 2020, 6(1): 1. doi: 10.1038/s41572-019-0135-7.
|
11. |
Lindsay TH, Halvorson KG, Peters CM, et al. A quantitative analysis of the sensory and sympathetic innervation of the mouse pancreas. Neuroscience, 2006, 137(4): 1417-1426.
|
12. |
DiMagno EP. Toward understanding (and management) of painful chronic pancreatitis. Gastroenterology, 1999, 116(5): 1252-1257.
|
13. |
Choi JE, Di Nardo A. Skin neurogenic inflammation. Semin Immunopathol, 2018, 40(3): 249-259.
|
14. |
Lasagni Vitar RM, Rama P, Ferrari G. The two-faced effects of nerves and neuropeptides in corneal diseases. Prog Retin Eye Res, 2022, 86: 100974. doi: 10.1016/j.preteyeres.2021. 100974.
|
15. |
Vera-Portocarrero L, Westlund KN. Role of neurogenic inflammation in pancreatitis and pancreatic pain. Neurosignals, 2005, 14(4): 158-165.
|
16. |
Schnipper J, Dhennin-Duthille I, Ahidouch A, et al. Ion channel signature in healthy pancreas and pancreatic ductal adenocarcinoma. Front Pharmacol, 2020, 11: 568993. doi: 10.3389/fphar.2020.568993.
|
17. |
Wick EC, Hoge SG, Grahn SW, et al. Transient receptor potential vanilloid 1, calcitonin gene-related peptide, and substance P mediate nociception in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol, 2006, 290(5): G959-G969.
|
18. |
Ceppa E, Cattaruzza F, Lyo V, et al. Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. Am J Physiol Gastrointest Liver Physiol, 2010, 299(3): G556-G571.
|
19. |
Grundy L, Erickson A, Brierley SM. Visceral pain. Annu Rev Physiol, 2019, 81: 261-284.
|
20. |
Vigna SR, Shahid RA, Nathan JD, et al. Leukotriene B4 mediates inflammation via TRPV1 in duct obstruction-induced pancreatitis in rats. Pancreas, 2011, 40(5): 708-714.
|
21. |
Nathan JD, Patel AA, McVey DC, et al. Capsaicin vanilloid receptor-1 mediates substance P release in experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol, 2001, 281(5): G1322-G1328.
|
22. |
Romac JM, McCall SJ, Humphrey JE, et al. Pharmacologic disruption of TRPV1-expressing primary sensory neurons but not genetic deletion of TRPV1 protects mice against pancreatitis. Pancreas, 2008, 36(4): 394-401.
|
23. |
Schwartz ES, Christianson JA, Chen X, et al. Synergistic role of TRPV1 and TRPA1 in pancreatic pain and inflammation. Gastroenterology, 2011, 140(4): 1283-1291.
|
24. |
Terada Y, Fujimura M, Nishimura S, et al. Contribution of TRPA1 as a downstream signal of proteinase-activated receptor-2 to pancreatic pain. J Pharmacol Sci, 2013, 123(3): 284-287.
|
25. |
Kanju P, Chen Y, Lee W, et al. Small molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain. Sci Rep, 2016, 6: 26894. doi: 10.1038/srep26894.
|
26. |
Swain SM, Romac JM, Shahid RA, et al. TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation. J Clin Invest, 2020, 130(5): 2527-2541.
|
27. |
Steinhoff MS, von Mentzer B, Geppetti P, et al. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev, 2014, 94(1): 265-301.
|
28. |
Ramnath RD, Sun J, Bhatia M. Involvement of SRC family kinases in substance P-induced chemokine production in mouse pancreatic acinar cells and its significance in acute pancreatitis. J Pharmacol Exp Ther, 2009, 329(2): 418-428.
|
29. |
Koh YH, Tamizhselvi R, Moochhala S, et al. Role of protein kinase C in caerulein induced expression of substance P and neurokinin-1-receptors in murine pancreatic acinar cells. J Cell Mol Med, 2011, 15(10): 2139-2149.
|
30. |
Li B, Han X, Ye X, et al. Substance P-regulated leukotriene B4 production promotes acute pancreatitis-associated lung injury through neutrophil reverse migration. Int Immunopharmacol, 2018, 57: 147-156.
|
31. |
Ramnath RD, Bhatia M. Substance P treatment stimulates chemokine synthesis in pancreatic acinar cells via the activation of NF-kappaB. Am J Physiol Gastrointest Liver Physiol, 2006, 291(6): G1113-G1119.
|
32. |
Han C, Du D, Wen Y, et al. Chaiqin chengqi decoction ameliorates acute pancreatitis in mice via inhibition of neuron activation-mediated acinar cell SP/NK1R signaling pathways. J Ethnopharmacol, 2021, 274: 114029. doi: 10.1016/j.jep.2021.114029.
|
33. |
Russell FA, King R, Smillie SJ, et al. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev, 2014, 94(4): 1099-1142.
|
34. |
Sternini C, Brecha N. Immunocytochemical identification of islet cells and nerve fibers containing calcitonin gene-related peptide-like immunoreactivity in the rat pancreas. Gastroenterology, 1986, 90(5 Pt 1): 1155-1163.
|
35. |
Warzecha Z, Dembiński A, Ceranowicz P, et al. The influence of sensory nerves and CGRP on the pancreatic regeneration after repeated episodes of acute pancreatitis in rats. J Physiol Pharmacol. 2000, 51(3): 449-461.
|
36. |
Warzecha Z, Dembiński A, Ceranowicz P, et al. Protective effect of calcitonin gene-related peptide against caerulein-induced pancreatitis in rats. J Physiol Pharmacol. 1997, 48(4): 775-787.
|
37. |
Warzecha Z, Dembiński A, Ceranowicz P, et al. Calcitonin gene-related peptide can attenuate or augment pancreatic damage in caerulein-induced pancreatitis in rats. J Physiol Pharmacol. 1999, 50(1): 49-62.
|
38. |
Wick EC, Pikios S, Grady EF, et al. Calcitonin gene-related peptide partially mediates nociception in acute experimental pancreatitis. Surgery, 2006, 139(2): 197-201.
|
39. |
Nishimura S, Fukushima O, Ishikura H, et al. Hydrogen sulfide as a novel mediator for pancreatic pain in rodents. Gut, 2009, 58(6): 762-770.
|
40. |
Terada Y, Fujimura M, Nishimura S, et al. Roles of Cav3. 2 and TRPA1 channels targeted by hydrogen sulfide in pancreatic nociceptive processing in mice with or without acute pancreatitis. J Neurosci Res, 2015, 93(2): 361-369.
|
41. |
Qiu Y, Huang L, Fu J, et al. TREK channel family activator with a well-defined structure-activation relationship for pain and neurogenic inflammation. J Med Chem, 2020, 63(7): 3665-3677.
|
42. |
Li J, Liu Y, Yuan L, et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature, 2022, 606(7912): 94-101.
|
43. |
Zhang Q, Ren Y, Mo Y, et al. Inhibiting Hv1 channel in peripheral sensory neurons attenuates chronic inflammatory pain and opioid side effects. Cell Res, 2022, 32(5): 461-476.
|
44. |
Beaulieu-Laroche L, Christin M, Donoghue A, et al. TACAN is an ion channel involved in sensing mechanical pain. Cell, 2020, 180(5): 956-967.
|