1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Esin E, Yalcin S. Maintenance strategy in metastatic colorectal cancer: a systematic review. Cancer Treat Rev, 2016, 42: 82-90.
|
3. |
Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer, 2013, 49(6): 1374-1403.
|
4. |
Pernot S, Velut G, Kourie RH, et al. 5-FU or mitomycin C hepatic arterial infusion after failure of arterial oxaliplatin in patients with colorectal cancer unresectable liver metastases. Clin Res Hepatol Gastroenterol, 2018, 42(3): 255-260.
|
5. |
金晶, 顾晋, 沈琳. 结直肠癌肺转移多学科综合治疗专家共识(2018版). 实用肿瘤杂志, 2018, 33(6): 487-501.
|
6. |
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014, 345(6194): 1247125. doi: 10.1126/science.1247125.
|
7. |
Smith JD, Ruby JA, Goodman KA, et al. Nonoperative management of rectal cancer with complete clinical response after neoadjuvant therapy. Ann Surg, 2012, 256(6): 965-972.
|
8. |
Ganesh K, Wu C, O’Rourke KP, et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med, 2019, 25(10): 1607-1614.
|
9. |
Fleming M, Ravula S, Tatishchev SF, et al. Colorectal carcinoma: pathologic aspects. J Gastrointest Oncol, 2012, 3(3): 153-173.
|
10. |
Venook AP, Niedzwiecki D, Lenz HJ, et al. Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: a randomized clinical trial. JAMA, 2017, 317(23): 2392-2401.
|
11. |
Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244): 262-265.
|
12. |
Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 2012, 10(6): 771-785.
|
13. |
Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature, 2013, 501(7467): 373-379.
|
14. |
Quadrato G, Nguyen T, Macosko EZ, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature, 2017, 545(7652): 48-53.
|
15. |
Paşca AM, Sloan SA, Clarke LE, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods, 2015, 12(7): 671-678.
|
16. |
Sakaguchi H, Kadoshima T, Soen M, et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun, 2015, 6: 8896. doi: 10.1038/ncomms9896.
|
17. |
Koehler KR, Nie J, Longworth-Mills E, et al. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat Biotechnol, 2017, 35(6): 583-589.
|
18. |
Miller AJ, Dye BR, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc, 2019, 14(2): 518-540.
|
19. |
McCracken KW, Catá EM, Crawford CM, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 2014, 516(7531): 400-404.
|
20. |
Hu H, Gehart H, Artegiani B, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell, 2018, 175(6): 1591-1606.
|
21. |
Hohwieler M, Illing A, Hermann PC, et al. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut, 2017, 66(3): 473-486.
|
22. |
Bleijs M, van de Wetering M, Clevers H, et al. Xenograft and organoid model systems in cancer research. EMBO J, 2019, 38(15): e101654. doi: 10.15252/embj.2019101654.
|
23. |
Nanki K, Toshimitsu K, Takano A, et al. Divergent routes toward wnt and r-spondin niche independency during human gastric carcinogenesis. Cell, 2018, 174(4): 856-869.
|
24. |
Smith RC, Tabar V. Constructing and deconstructing cancers using human pluripotent stem cells and organoids. Cell Stem Cell, 2019, 24(1): 12-24.
|
25. |
Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology, 2011, 141(5): 1762-1772.
|
26. |
Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell, 2016, 18(6): 827-838.
|
27. |
Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1-2): 373-386.
|
28. |
Qu Y, Han B, Gao B, et al. Differentiation of human induced pluripotent stem cells to mammary-like organoids. Stem Cell Reports, 2017, 8(2): 205-215.
|
29. |
Broutier L, Mastrogiovanni G, Verstegen MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med, 2017, 23(12): 1424-1435.
|
30. |
Kim M, Mun H, Sung CO, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun, 2019, 10(1): 3991. doi: 10.1038/s41467-019-11867-6.
|
31. |
Boj SF, Hwang CI, Baker LA, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell, 2015, 160(1-2): 324-338.
|
32. |
Boretto M, Maenhoudt N, Luo X, et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol, 2019, 21(8): 1041-1051.
|
33. |
Seidlitz T, Merker SR, Rothe A, et al. Human gastric cancer modelling using organoids. Gut, 2019, 68(2): 207-217.
|
34. |
van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015, 161(4): 933-945.
|
35. |
Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018, 359(6378): 920-926.
|
36. |
Yao Y, Xu X, Yang L, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell, 2020, 26(1): 17-26.
|
37. |
Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3d organoid systems. Trends Mol Med, 2017, 23(5): 393-410.
|
38. |
Jin MZ, Han RR, Qiu GZ, et al. Organoids: an intermediate modeling platform in precision oncology. Cancer Lett, 2018, 414: 174-180.
|
39. |
Yokota E, Iwai M, Yukawa T, et al. Clinical application of a lung cancer organoid (tumoroid) culture system. NPJ Precis Oncol, 2021, 5(1): 29. doi: 10.1038/s41698-021-00166-3.
|
40. |
Bregenzer M, Horst E, Mehta P, et al. The role of the tumor microenvironment in csc enrichment and chemoresistance: 3D co-culture methods. Methods Mol Biol, 2022, 2424: 217-245.
|
41. |
Dzobo K. Taking a full snapshot of cancer biology: deciphering the tumor microenvironment for effective cancer therapy in the oncology clinic. OMICS, 2020, 24(4): 175-179.
|
42. |
Dzobo K, Rowe A, Senthebane DA, et al. Three-dimensional organoids in cancer research: the search for the holy grail of preclinical cancer modeling. OMICS, 2018, 22(12): 733-748.
|
43. |
Zanoni M, Cortesi M, Zamagni A, et al. Modeling neoplastic disease with spheroids and organoids. J Hematol Oncol, 2020, 13(1): 97. doi: 10.1186/s13045-020-00931-0.
|
44. |
Ooft SN, Weeber F, Dijkstra KK, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med, 2019, 11(513): eaay2574. doi: 10.1126/scitranslmed.aay2574.
|