1. |
Xu JY, Ding K, Mu L, et al. Hashimoto’s thyroiditis: a “double-edged sword” in thyroid carcinoma. Front Endocrinol (Lausanne), 2022, 13: 801925. doi: 10.3389/fendo.2022.801925.
|
2. |
Tang QZ, Pan WY, Peng LY. Association between Hashimoto thyroiditis and clinical outcomes of papillary thyroid carcinoma: A meta-analysis. PLoS One, 2022, 17(6): e0269995. doi: 10.1371/journal.pone.0269995.
|
3. |
Coelho M, Raposo L, Goodfellow BJ, et al. The potential of metabolomics in the diagnosis of thyroid cancer. Int J Mol Sci, 2020, 21(15): 5272. doi: 10.3390/ijms21155272.
|
4. |
Weetman AP. An update on the pathogenesis of Hashimoto’s thyroiditis. J Endocrinol Invest, 2021, 44(5): 883-890.
|
5. |
Giuffrida D, Giuffrida R, Puliafito I, et al. Thyroidectomy as treatment of choice for differentiated thyroid cancer. Int J Surg Oncol, 2019, 2019: 2715260. doi: 10.1155/2019/2715260.
|
6. |
Nguyen M, He G, Lam KY. Clinicopathological and molecular features of secondary cancer (metastasis) to the thyroid and advances in management. Int J Mol Sci, 2022, 23(6): 3242. doi: 10.3390/ijms23063242.
|
7. |
张颖超, 邓先兆, 郭伯敏, 等. 甲状腺癌分子诊断和靶向治疗的新进展及应用. 中华内分泌外科杂志, 2021, 15(5): 546-550.
|
8. |
Ruiz EML, Niu T, Zerfaoui M, et al. A novel gene panel for prediction of lymph-node metastasis and recurrence in patients with thyroid cancer. Surgery, 2020, 167(1): 73-79.
|
9. |
王亚茜, 王晓武, 马志军. 甲状腺微小乳头状癌术前诊断的研究进展. 临床医学进展, 2022, 12(6): 4983-4988.
|
10. |
Zhou LG, Chen G, Sheng L, et al. Influence factors for lymph node metastasis in papillary thyroid carcinoma: Hashimoto’s thyroiditis has a weak effect on central or lateral lymph node metastasis. Cancer Manag Res, 2021, 13: 3953-3961.
|
11. |
Zhang X, Zhang X, Chang Z, et al. Correlation analyses of thyroid-stimulating hormone and thyroid autoantibodies with differentiated thyroid cancer. J Buon, 2018, 23(5): 1467-1471.
|
12. |
Rashid FA, Munkhdelger J, Fukuoka J, et al. Prevalence of BRAFV600E mutation in asian series of papillary thyroid carcinoma—a contemporary systematic review. Gland Surg, 2020, 9(5): 1878-1900.
|
13. |
高旭, 喻庆安, 闫肖, 等. 分化型甲状腺癌血液标志物的研究现状及进展. 中国普外基础与临床杂志, 2022, 29(1): 118-123.
|
14. |
Hamad MA, Lasrado S, Albarbari HS, et al. Research productivity in the genetics of papillary thyroid carcinoma (1991-2020): a bibliometric analysis. Acta Biomed, 2022, 93(3): e2022086. doi: 10.23750/abm.v93i3.12576.
|
15. |
Landa I, Pozdeyev N, Knauf JA, et al. Genetics of human thyroid cancer cell lines-response. Clin Cancer Res, 2019, 25(22): 6883-6884.
|
16. |
Wang CW, Lee YC, Calista E, et al. A benchmark for comparing precision medicine methods in thyroid cancer diagnosis using tissue microarrays. Bioinformatics, 2018, 34(10): 1767-1773.
|
17. |
Singh A, Ham J, Po JW, et al. The genomic landscape of thyroid cancer tumourigenesis and implications for immunotherapy. Cells, 2021, 10(5): 1082. doi: 10.3390/cells10051082.
|
18. |
Ma HZ, Wang R, Fang JG, et al. A meta-analysis evaluating the relationship between B-type Raf kinase mutation and cervical lymphatic metastasis in papillary thyroid cancer. Medicine (Baltimore), 2020, 99(5): e18917. doi: 10.1097/MD.0000000000018917.
|
19. |
Liang J, Cai W, Feng D, et al. Genetic landscape of papillary thyroid carcinoma in the Chinese population. J Pathol, 2018, 244(2): 215-226.
|
20. |
Banizs AB, Silverman JF. The utility of combined mutation analysis and microRNA classification in reclassifying cancer risk of cytologically indeterminate thyroid nodules. Diagn Cytopathol, 2019, 47(4): 268-274.
|
21. |
Agarwal S, Bychkov A, Jun CK. Emerging biomarkers in thyroid practice and research. Cancers (Basel), 2022, 14(1): 204. doi: 10.3390/cancers14010204.
|
22. |
奥伟, 殷德涛. 运用生物信息学筛选甲状腺乳头状癌生物靶点. 中国普外基础与临床杂志, 2021, 28(3): 329-335.
|
23. |
Lan XB, Bao H, Ge XY, et al. Genomic landscape of metastatic papillary thyroid carcinoma and novel biomarkers for predicting distant metastasis. Cancer Sci, 2020, 111(6): 2163-2173.
|
24. |
Gerber TS, Schad A, Hartmann N, et al. Targeted next-generation sequencing of cancer genes in poorly differentiated thyroid cancer. Endocr Connect, 2018, 7(1): 47-55.
|
25. |
庞长安, 朱洪海, 李雪娟, 等. 瞬时受体蛋白通道 C5 和 miR-320a 在甲状腺癌中的表达及临床意义. 中国普外基础与临床杂志, 2021, 28(9): 1165-1170.
|
26. |
Rangel-Pozzo A, Sisdelli L, Isabel V M, et al. Genetic landscape of papillary thyroid carcinoma and nuclear architecture: an overview comparing pediatric and adult populations. Cancers (Basel), 2020 , 12(11): 3146. doi: 10.3390/cancers12113146.
|
27. |
Xing MZ, Alzahrani AS, Carson KA, et al. Association between BRAFV600E mutation and mortality in patients with papillary thyroid cancer. JAMA, 2013, 309: 1493-1501.
|
28. |
Pelaz AC, Shah JP, Hernandez-Prera JC, et al. Papillary thyroid cancer—aggressive variants and impact on management: a narrative review. Adv Ther, 2020, 37(7): 3112-3128.
|
29. |
Howell GM, Nikiforova MN, Carty SE, et al. BRAFV600E mutation independently predicts central compartment lymph node metastasis in patients with papillary thyroid cancer. Ann Surg Oncol, 2013, 20(1): 47-52.
|
30. |
李微微, 宋根, 张伟. KRTAP5-AS1 负调控miR-335对甲状腺癌细胞增殖、迁移及凋亡的影响. 中国免疫学杂志, 2022, 37(6): 708-714.
|
31. |
Liao YN, Hua YJ, Zhang CL, et al. CRSP8 promotes thyroid cancer progression by antagonizing IKKα-induced cell differentiation. Cell Death Differ, 2021, 28(4): 1347-1363.
|
32. |
Li SP, Li SL, Lin M, et al. Interleukin-17 and vascular endothelial growth factor: new biomarkers for the diagnosis of papillary thyroid carcinoma in patients with Hashimoto’s thyroiditis. J Int Med Res, 2022, 50(1): 03000605211067121. doi: 10.1177/03000605211067121.
|
33. |
Choe J, Baek JH, Park HS, et al. Core needle biopsy of thyroid nodules: outcomes and safety from a large single-center single-operator study. Acta Radiol, 2018, 59(8): 924-931.
|
34. |
Carrillo JF, Vázquez-Romo R, Ramírez-Ortega MC, et al. Prognostic impact of direct 131I therapy after detection of biochemical recurrence in intermediate or high-risk differentiated thyroid cancer: a retrospective cohort study. Front Endocrinol (Lausanne), 2019, 10: 737. doi: 10.3389/fendo.2019.00737.
|
35. |
Akın Ş, Yazgan Aksoy D, Akın S, et al. Prediction of central lymph node metastasis in patients with thyroid papillary microcarcinoma. Turk J Med Sci, 2017, 47(6): 1723-1727.
|
36. |
Papaioannou M, Chorti AG, Chatzikyriakidou A, et al. MicroRNAs in papillary thyroid cancer: What is new in diagnosis and treatment. Front Oncol, 2021, 11: 755097. doi: 10.3389/fonc.2021.755097.
|
37. |
Hu YF, Feng WW, ChenHH, et al. Effect of selenium on thyroid autoimmunity and regulatory T cells in patients with Hashimoto’s thyroiditis: A prospective randomized-controlled trial. Clin Transl Sci, 2021, 14(4): 1390-1402.
|
38. |
Zhao N, Liu X, Wu C, et al. Changes in Treg numbers and activity in papillary thyroid carcinoma with and without Hashimoto’s thyroiditis. J Int Med Res, 2020, 48(4): 0300060520919222. doi: 10.1177/0300060520919222.
|
39. |
Zhu F, Shen YB, Li FQ, et al. The effects of Hashimoto thyroiditis on lymph node metastases in unifocal and multifocal papillary thyroid carcinoma: a retrospective Chinese cohort study. Medicine (Baltimore), 2016, 95(6): e2674. doi: 10.1097/MD.0000000000002674.
|
40. |
程维刚, 刘九洲, 张海鸽, 等. 甲状腺癌中微小RNA-146b-5p表达上调通过靶向Smad4促进癌细胞增殖. 中华实验外科杂志, 2022, 39(2): 257-260.
|
41. |
Pani F, Caria P, Yasuda Y, et al. The immune landscape of papillary thyroid cancer in the context of autoimmune thyroiditis. Cancers (Basel) 2022 Sep; 14(17): 4287.
|
42. |
Hu XJ, Wang XY, Liang Y, et al. Cancer risk in Hashimoto’s thyroiditis: a systematic review and meta-analysis. Front Endocrinol (Lausanne), 2022, 13: 937871. doi: 10.3389/fendo.2022.937871.
|
43. |
Mohammad AJ, Shilpa T, Sriram G, et al. Novel targeted therapies for metastatic thyroid cancer—a comprehensive review. Cancers (Basel), 2020 , 12(8): 2104. doi: 10.3390/cancers12082104.
|