1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
Ho SWT, Tan P. Dissection of gastric cancer heterogeneity for precision oncology. Cancer Sci, 2019, 110(11): 3405-3414.
|
3. |
Sai E, Miwa Y, Takeyama R, et al. Identification of candidates for driver oncogenes in scirrhous-type gastric cancer cell lines. Cancer Sci, 2019, 110(8): 2643-2651.
|
4. |
Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci, 2019, 234: 116781. doi: 10.1016/j.lfs.2019.116781.
|
5. |
Xiao S, Zhou L. Gastric stem cells: physiological and pathological perspectives. Front Cell Dev Biol, 2020, 8: 571536. doi: 10.3389/fcell.2020.571536.
|
6. |
Su Z, Yang Z, Xu Y, et al. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget, 2015, 6(11): 8474-8490.
|
7. |
詹盼盼, 舒雄, 陈梦. 微小RNA-195抑制CD44+胃癌干细胞的干性特征和侵袭能力. 江苏医药, 2021, 47(5): 437-442, 446.
|
8. |
Xing S, Tian Z, Zheng W, et al. Hypoxia downregulated miR-4521 suppresses gastric carcinoma progression through regulation of IGF2 and FOXM1. Mol Cancer, 2021, 20(1): 9. doi: 10.1186/s12943-020-01295-2.
|
9. |
孙生安, 白明辉, 韩保卫, 等. Hsa-miR-29c在胃癌中的表达及其临床意义研究. 中国普外基础与临床杂志, 2021, 28(2): 200-207.
|
10. |
Xiao Z, Zheng YB, Dao WX, et al. MicroRNA-328-3p facilitates the progression of gastric cancer via KEAP1/NRF2 axis. Free Radic Res, 2021, 55(6): 720-730.
|
11. |
Huangfu L, He Q, Han J, et al. MicroRNA-135b/CAMK2D axis contribute to malignant progression of gastric cancer through EMT process remodeling. Int J Biol Sci, 2021, 17(8): 1940-1952.
|
12. |
刘文能, 杨百仞, 李东, 等. 外周血中miRNA-196a在进展期胃癌中的表达及其临床及生物学意义. 中国普外基础与临床杂志, 2021, 28(8): 1025-1030.
|
13. |
Ors-Kumoglu G, Gulce-Iz S, Biray-Avci C. Therapeutic microRNAs in human cancer. Cytotechnology, 2019, 71(1): 411-425.
|
14. |
Mukohyama J, Isobe T, Hu Q, et al. miR-221 targets QKI to enhance the tumorigenic capacity of human colorectal cancer stem cells. Cancer Res, 2019, 79(20): 5151-5158.
|
15. |
Ruggieri V, Russi S, Zoppoli P, et al. The role of microRNAs in the regulation of gastric cancer stem cells: a meta-analysis of the current status. J Clin Med, 2019, 8(5): 639. doi: 10.3390/jcm8050639.
|
16. |
Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci, 2018, 25(1): 20. doi: 10.1186/s12929-018-0426-4.
|
17. |
Atashzar MR, Baharlou R, Karami J, et al. Cancer stem cells: a review from origin to therapeutic implications. J Cell Physiol, 2020, 235(2): 790-803.
|
18. |
Treisman D, Li Y, Zhu Y. Stem-like cell populations, p53-pathway activation and mechanisms of recurrence in sonic hedgehog medulloblastoma. Neuromolecular Med, 2022, 24(1): 13-17.
|
19. |
Grassi ES, Ghiandai V, Persani L. Thyroid cancer stem-like cells: from microenvironmental niches to therapeutic strategies. J Clin Med, 2021, 10(7): 1455. doi: 10.3390/jcm10071455.
|
20. |
Liu J, Ma L, Xu J, et al. Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties. Int J Oncol, 2013, 42(2): 453-459.
|
21. |
Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells, 2009, 27(5): 1006-1020.
|
22. |
Zhang C, Li C, He F, et al. Identification of CD44+CD24+ gastric cancer stem cells. J Cancer Res Clin Oncol, 2011, 137(11): 1679-1686.
|
23. |
Ni T, Wang H, Zhan D, et al. CD133+/CD166+ human gastric adenocarcinoma cells present the properties of neoplastic stem cells and emerge more malignant features. Life Sci, 2021, 269: 119021. doi: 10.1016/j.lfs.2021.119021.
|
24. |
张东阳, 陈小龙, 宋小海, 等. 胃癌患者外周血中CD45–CD44+CD54+细胞亚群含量及其临床意义. 中国普外基础与临床杂志, 2020, 27(4): 434-441.
|
25. |
Chen S, Chen C, Hu Y, et al. Three-dimensional ex vivo culture for drug responses of patient-derived gastric cancer tissue. Front Oncol, 2021, 10: 614096. doi: 10.3389/fonc.2020.614096.
|
26. |
Kim DH, Lee S, Kang HG, et al. Synergistic antitumor activity of a DLL4/VEGF bispecific therapeutic antibody in combination with irinotecan in gastric cancer. BMB Rep, 2020, 53(10): 533-538.
|
27. |
Hui Y, Yang Y, Li D, et al. LncRNA FEZF1-AS1 modulates cancer stem cell properties of human gastric cancer through miR-363-3p/HMGA2. Cell Transplant, 2020, 29: 963689720925059. doi: 10.1177/0963689720925059.
|
28. |
Ni H, Qin H, Sun C, et al. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Res Ther, 2021, 12(1): 325. doi: 10.1186/s13287-021-02394-7.
|
29. |
Wu K, Ma L, Zhu J. miR-483-5p promotes growth, invasion and self-renewal of gastric cancer stem cells by Wnt/β-catenin signaling. Mol Med Rep, 2016, 14(4): 3421-3428.
|
30. |
Sun B, Han Y, Cai H, et al. Long non-coding RNA SNHG3, induced by IL-6/STAT3 transactivation, promotes stem cell-like properties of gastric cancer cells by regulating the miR-3619-5p/ARL2 axis. Cell Oncol (Dordr), 2021, 44(1): 179-192.
|
31. |
Dastmalchi N, Safaralizadeh R, Teimourian S. An updated review of the contribution of noncoding RNAs to the progression of gastric cancer stem cells: molecular mechanisms of viability, invasion, and chemoresistance of gastric cancer stem cells. Curr Stem Cell Res Ther, 2022, 17(5): 440-445.
|
32. |
Xin L, Liu L, Liu C, et al. DNA-methylation-mediated silencing of miR-7-5p promotes gastric cancer stem cell invasion via increasing Smo and Hes1. J Cell Physiol, 2020, 235(3): 2643-2654.
|
33. |
Mirzaei S, Baghaei K, Parivar K, et al. The expression level changes of microRNAs 200a/205 in the development of invasive properties in gastric cancer cells through epithelial-mesenchymal transition. Eur J Pharmacol, 2019, 857: 172426. doi: 10.1016/j.ejphar.2019.172426.
|
34. |
Song H, Shi L, Xu Y, et al. BRD4 promotes the stemness of gastric cancer cells via attenuating miR-216a-3p-mediated inhibition of Wnt/β-catenin signaling. Eur J Pharmacol, 2019, 852: 189-197.
|
35. |
Peng X, Kang Q, Wan R, et al. miR-26a/HOXC9 dysregulation promotes metastasis and stem cell-like phenotype of gastric cancer. Cell Physiol Biochem, 2018, 49(4): 1659-1676.
|
36. |
Li L, Zhao J, Huang S, et al. MiR-93-5p promotes gastric cancer-cell progression via inactivation of the Hippo signaling pathway. Gene, 2018, 641: 240-247.
|
37. |
Du M, Zhuang Y, Tan P, et al. microRNA-95 knockdown inhibits epithelial-mesenchymal transition and cancer stem cell phenotype in gastric cancer cells through MAPK pathway by upregulating DUSP5. J Cell Physiol, 2020, 235(2): 944-956.
|
38. |
Lampis A, Hahne JC, Hedayat S, et al. MicroRNAs as mediators of drug resistance mechanisms. Curr Opin Pharmacol, 2020, 54: 44-50.
|
39. |
Divisato G, Piscitelli S, Elia M, et al. MicroRNAs and stem-like properties: the complex regulation underlying stemness maintenance and cancer development. Biomolecules, 2021, 11(8): 1074. doi: 10.3390/biom11081074.
|
40. |
Xiao WS, Li DF, Tang YP, et al. Inhibition of epithelial-mesenchymal transition in gastric cancer cells by miR-711-mediated downregulation of CD44 expression. Oncol Rep, 2018, 40(5): 2844-2853.
|
41. |
Pan Y, Shu X, Sun L, et al. miR-196a-5p modulates gastric cancer stem cell characteristics by targeting Smad4. Int J Oncol, 2017, 50(6): 1965-1976.
|
42. |
Zhang J, Wang C, Yan S, et al. miR-345 inhibits migration and stem-like cell phenotype in gastric cancer via inactivation of Rac1 by targeting EPS8. Acta Biochim Biophys Sin (Shanghai), 2020, 52(3): 259-267.
|
43. |
Wu S, Xie J, Shi H, et al. miR-492 promotes chemoresistance to CDDP and metastasis by targeting inhibiting DNMT3B and induces stemness in gastric cancer. Biosci Rep, 2020, 40(3): BSR20194342. doi: 10.1042/BSR20194342.
|
44. |
Shen C, Wang J, Xu Z, et al. ONECUT2 which is targeted by hsa-miR-15a-5p enhances stemness maintenance of gastric cancer stem cells. Exp Biol Med (Maywood), 2021, 246(24): 2645-2659.
|
45. |
Zhan P, Shu X, Chen M, et al. miR-98-5p inhibits gastric cancer cell stemness and chemoresistance by targeting branched-chain aminotransferases 1. Life Sci, 2021, 276: 119405. doi: 10.1016/j.lfs.2021.119405.
|
46. |
Hwang GR, Yuen JG, Ju J. Roles of microRNAs in gastrointestinal cancer stem cell resistance and therapeutic development. Int J Mol Sci, 2021, 22(4): 1624. doi: 10.3390/ijms22041624.
|
47. |
Lee SD, Yu D, Lee DY, et al. Upregulated microRNA-193a-3p is responsible for cisplatin resistance in CD44(+) gastric cancer cells. Cancer Sci, 2019, 110(2): 662-673.
|
48. |
Baldessari C, Gelsomino F, Spallanzani A, et al. Beyond the beyond: a case of an extraordinary response to multiple lines of therapy in a de novo metastatic HER2-negative gastric cancer patient. Gastrointest Tumors, 2018, 5(1-2): 14-20.
|
49. |
Wei C, Chen M, Deng W, et al. Characterization of gastric cancer stem-like molecular features, immune and pharmacogenomic landscapes. Brief Bioinform, 2022, 23(1): bbab386. doi: 10.1093/bib/bbab386.
|
50. |
Peng C, Huang K, Liu G, et al. MiR-876-3p regulates cisplatin resistance and stem cell-like properties of gastric cancer cells by targeting TMED3. J Gastroenterol Hepatol, 2019, 34(10): 1711-1719.
|
51. |
刘云霞, 徐叶峰, 王翌庆, 等. miRNA-139-5p靶向Notch1/Jagged1调控胃癌干细胞增殖转移及益气补肾方的干预作用. 中华中医药杂志, 2021, 36(1): 441-445.
|
52. |
Ratti M, Lampis A, Ghidini M, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target Oncol, 2020, 15(3): 261-278.
|
53. |
Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet, 2019, 10: 478. doi: 10.3389/fgene.2019.00478.
|
54. |
Ganju A, Khan S, Hafeez BB, et al. miRNA nanotherapeutics for cancer. Drug Discov Today, 2017, 22(2): 424-432.
|
55. |
Liu Q, Li RT, Qian HQ, et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials, 2013, 34(29): 7191-7203.
|
56. |
Qian L, Liu F, Chu Y, et al. MicroRNA-200c nanoparticles sensitized gastric cancer cells to radiotherapy by regulating PD-L1 expression and EMT. Cancer Manag Res, 2020, 12: 12215-12223.
|