1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
肖文博, 朱广涵, 朱云, 等. 1990–2019年中国主要消化系统恶性肿瘤发病变化分析. 中国肿瘤, 2022, 31(9): 693-700.
|
3. |
Jung G, Hernández-Illán E, Moreira L, et al. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol, 2020, 17(2): 111-130.
|
4. |
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech, 2017, 10(3): 197-214.
|
5. |
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell, 2012, 149(6): 1192-1205.
|
6. |
Bian J, Dannappel M, Wan C, et al. Transcriptional regulation of Wnt/β-catenin pathway in colorectal cancer. Cells, 2020, 9(9): 2125. doi: 10.3390/cells9092125.
|
7. |
Rahmani F, Avan A, Hashemy SI, et al. Role of Wnt/β-catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J Cell Physiol, 2018, 233(2): 811-817.
|
8. |
Wan ML, Wang Y, Zeng Z, et al. Colorectal cancer (CRC) as a multifactorial disease and its causal correlations with multiple signaling pathways. Biosci Rep, 2020, 40(3): BSR20200265. doi: 10.1042/BSR20200265.
|
9. |
Lv S, Zhang J, He Y, et al. MicroRNA-520e targets AEG-1 to suppress the proliferation and invasion of colorectal cancer cells through Wnt/GSK-3β/β-catenin signalling. Clin Exp Pharmacol Physiol, 2020, 47(1): 158-167.
|
10. |
Chen ZQ, Yuan T, Jiang H, et al. MicroRNA-8063 targets heterogeneous nuclear ribonucleoprotein AB to inhibit the self-renewal of colorectal cancer stem cells via the Wnt/β-catenin pathway. Oncol Rep, 2021, 46(4): 219. doi: 10.3892/or.2021.8170.
|
11. |
Luo J, Liu L, Shen J, et al. miR-576-5p promotes epithelial-to-mesenchymal transition in colorectal cancer by targeting the Wnt5a-mediated Wnt/β-catenin signaling pathway. Mol Med Rep, 2021, 23(2): 94. doi: 10.3892/mmr.2020.11733.
|
12. |
Liu P, Cao F, Sui J, et al. MicroRNA-142-3p inhibits tumorigenesis of colorectal cancer via suppressing the activation of Wnt signaling by directly targeting to β-catenin. Front Oncol, 2021, 10: 552944. doi: 10.3389/fonc.2020.552944.
|
13. |
Yu FB, Sheng J, Yu JM, et al. MiR-19a-3p regulates the Forkhead box F2-mediated Wnt/β-catenin signaling pathway and affects the biological functions of colorectal cancer cells. World J Gastroenterol, 2020, 26(6): 627-644.
|
14. |
Zhou L, Wang H, Fang Z, et al. The microRNA-381 (miR-381)/Spindlin1 (SPIN1) axis contributes to cell proliferation and invasion of colorectal cancer cells by regulating the Wnt/β-catenin pathway. Bioengineered, 2021, 12(2): 12036-12048.
|
15. |
Liu R, Deng P, Zhang Y, et al. Circ_0082182 promotes oncogenesis and metastasis of colorectal cancer in vitro and in vivo by sponging miR-411 and miR-1205 to activate the Wnt/β-catenin pathway. World J Surg Oncol, 2021, 19(1): 51. doi: 10.1186/s12957-021-02164-y.
|
16. |
Noorolyai S, Mokhtarzadeh A, Baghbani E, et al. The role of microRNAs involved in PI3-kinase signaling pathway in colorectal cancer. J Cell Physiol, 2019, 234(5): 5664-5673.
|
17. |
Kontomanolis EN, Koutras A, Syllaios A, et al. Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res, 2020, 40(11): 6009-6015.
|
18. |
Moafian Z, Maghrouni A, Soltani A, et al. Cross-talk between non-coding RNAs and PI3K/AKT/mTOR pathway in colorectal cancer. Mol Biol Rep, 2021, 48(5): 4797-4811.
|
19. |
Tang Y, Weng X, Liu C, et al. Hypoxia enhances activity and malignant behaviors of colorectal cancer cells through the STAT3/MicroRNA-19a/PTEN/PI3K/AKT axis. Anal Cell Pathol (Amst), 2021, 2021: 4132488. doi: 10.1155/2021/4132488.
|
20. |
Cui FC, Chen Y, Wu XY, et al. MicroRNA-493-5p suppresses colorectal cancer progression via the PI3K-Akt-FoxO3a signaling pathway. Eur Rev Med Pharmacol Sci, 2020, 24(8): 4212-4223.
|
21. |
Luo Z, Hao S, Yuan J, et al. Long non-coding RNA LINC00958 promotes colorectal cancer progression by enhancing the expression of LEM domain containing 1 via microRNA miR-3064-5p. Bioengineered, 2021, 12(1): 8100-8115.
|
22. |
Xin H, Wang C, Chi Y, et al. MicroRNA-196b-5p promotes malignant progression of colorectal cancer by targeting ING5. Cancer Cell Int, 2020, 20: 119. doi: 10.1186/s12935-020-01200-3.
|
23. |
Li C, Ding D, Gao Y, et al. MicroRNA-3651 promotes colorectal cancer cell proliferation through directly repressing T-box transcription factor 1. Int J Mol Med, 2020, 45(3): 956-966.
|
24. |
Stefani C, Miricescu D, Stanescu-Spinu II, et al. Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: where are we now?. Int J Mol Sci, 2021, 22(19): 10260. doi: 10.3390/ijms221910260.
|
25. |
Soleimani A, Rahmani F, Saeedi N, et al. The potential role of regulatory microRNAs of RAS/MAPK signaling pathway in the pathogenesis of colorectal cancer. J Cell Biochem, 2019, 120(12): 19245-19253.
|
26. |
Hou R, Liu Y, Su Y, et al. Overexpression of long non-coding RNA FGF14-AS2 inhibits colorectal cancer proliferation via the RERG/Ras/ERK signaling by sponging microRNA-1288-3p. Pathol Oncol Res, 2020, 26(4): 2659-2667.
|
27. |
Liu X, Li L, Bai J, et al. Long noncoding RNA plasmacytoma variant translocation 1 promotes progression of colorectal cancer by sponging microRNA-152-3p and regulating E2F3/MAPK8 signaling. Cancer Sci, 2022, 113(1): 109-119.
|
28. |
Soleimani A, Pashirzad M, Avan A, et al. Role of the transforming growth factor-β signaling pathway in the pathogenesis of colorectal cancer. J Cell Biochem, 2019, 120(6): 8899-8907.
|
29. |
Koveitypour Z, Panahi F, Vakilian M, et al. Signaling pathways involved in colorectal cancer progression. Cell Biosci, 2019, 9: 97. doi: 10.1186/s13578-019-0361-4.
|
30. |
Falzone L, Scola L, Zanghì A, et al. Integrated analysis of colorectal cancer microRNA datasets: identification of microRNAs associated with tumor development. Aging (Albany NY), 2018, 10(5): 1000-1014.
|
31. |
Zhao X, Liu S, Yan B, et al. MiR-581/SMAD7 axis contributes to colorectal cancer metastasis: a bioinformatic and experimental validation-based study. Int J Mol Sci, 2020, 21(18): 6499. doi: 10.3390/ijms21186499.
|
32. |
Liu C, Xu M, Yan L, et al. Honeysuckle-derived microRNA2911 inhibits tumor growth by targeting TGF-β1. Chin Med, 2021, 16(1): 49. doi: 10.1186/s13020-021-00453-y.
|
33. |
Bai J, Zhang X, Shi D, et al. Exosomal miR-128-3p promotes epithelial-to-mesenchymal transition in colorectal cancer cells by targeting FOXO4 via TGF-β/SMAD and JAK/STAT3 signaling. Front Cell Dev Biol, 2021, 9: 568738. doi: 10.3389/fcell.2021.568738.
|
34. |
Cao W, Wang Q, Huang C. Let-7a inhibits tumor metastasis by regulating TGF-β/Smad signaling in the colorectal adenocarcinoma cell line LS-174T. Anticancer Res, 2021, 41(8): 3801-3808.
|
35. |
Soleimani A, Rahmani F, Ferns GA, et al. Role of the NF-κB signaling pathway in the pathogenesis of colorectal cancer. Gene, 2020, 726: 144132. doi: 10.1016/j.gene.2019.144132.
|
36. |
Gao Y, Han T, Han C, et al. Propofol regulates the TLR4/NF-κB pathway through miRNA-155 to protect colorectal cancer intestinal barrier. Inflammation, 2021, 44(5): 2078-2090.
|
37. |
Chen Z, Zhong T, Zhong J, et al. MicroRNA-129 inhibits colorectal cancer cell proliferation, invasion and epithelial-to-mesenchymal transition by targeting SOX4. Oncol Rep, 2021, 45(5): 61. doi: 10.3892/or.2021.8012.
|
38. |
Lai CY, Yeh KY, Liu BF, et al. MicroRNA-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-α signaling pathways in Zebrafish. Cancers (Basel), 2021, 13(21): 5565. doi: 10.3390/cancers13215565.
|
39. |
Wang LQ, Yu P, Li B, et al. MiR-372 and miR-373 enhance the stemness of colorectal cancer cells by repressing differentiation signaling pathways. Mol Oncol, 2018, 12(11): 1949-1964.
|
40. |
Wang J, Zhang Y, Song H, et al. The circular RNA circSPARC enhances the migration and proliferation of colorectal cancer by regulating the JAK/STAT pathway. Mol Cancer, 2021, 20(1): 81. doi: 10.1186/s12943-021-01375-x.
|
41. |
Li LX, Lam IH, Liang FF, et al. MiR-198 affects the proliferation and apoptosis of colorectal cancer through regulation of ADAM28/JAK-STAT signaling pathway. Eur Rev Med Pharmacol Sci, 2019, 23(4): 1487-1493.
|
42. |
Lamichhane S, Mo JS, Sharma G, et al. MicroRNA 452 regulates IL20RA-mediated JAK1/STAT3 pathway in inflammatory colitis and colorectal cancer. Inflamm Res, 2021, 70(8): 903-914.
|
43. |
Liu X, Qin Y, Tang X, et al. Circular RNA circ_0000372 contributes to the proliferation, migration and invasion of colorectal cancer by elevating IL6 expression via sponging miR-495. Anticancer Drugs, 2021, 32(3): 296-305.
|
44. |
Liu Z, Ma T, Duan J, et al. MicroRNA-223-induced inhibition of the FBXW7 gene affects the proliferation and apoptosis of colorectal cancer cells via the Notch and Akt/mTOR pathways. Mol Med Rep, 2021, 23(2): 154. doi: 10.3892/mmr.2020.11793.
|
45. |
Shen Y, Dai X, Chen H, et al. Comprehensive evaluation of microRNA-10b in digestive system cancers reveals prognostic implication and signaling pathways associated with tumor progression. J Cancer, 2021, 12(13): 4011-4024.
|
46. |
Ji G, Zhou W, Li X, et al. Melatonin inhibits proliferation and viability and promotes apoptosis in colorectal cancer cells via upregulation of the microRNA-34a/449a cluster. Mol Med Rep, 2021, 23(3): 187. doi: 10.3892/mmr.2021.11826.
|
47. |
Wierzbicki PM, Rybarczyk A. The Hippo pathway in colorectal cancer. Folia Histochem Cytobiol, 2015, 53(2): 105-119.
|
48. |
Yu D, Liu H, Qin J, et al. Curcumol inhibits the viability and invasion of colorectal cancer cells via miR-30a-5p and Hippo signaling pathway. Oncol Lett, 2021, 21(4): 299. doi: 10.3892/ol.2021.12560.
|
49. |
Xu X, Chen X, Xu M, et al. MiR-375-3p suppresses tumorigenesis and partially reverses chemoresistance by targeting YAP1 and SP1 in colorectal cancer cells. Aging (Albany NY), 2019, 11(18): 7357-7385.
|
50. |
Bahrami A, Jafari A, Ferns GA. The dual role of microRNA-9 in gastrointestinal cancers: oncomiR or tumor suppressor?. Biomed Pharmacother, 2022, 145: 112394. doi: 10.1016/j.biopha.2021.112394.
|
51. |
Wu C, Zhu X, Liu W, et al. Hedgehog signaling pathway in colorectal cancer: function, mechanism, and therapy. Onco Targets Ther, 2017, 10: 3249-3259.
|
52. |
Feng J, Wei Q, Yang M, et al. Development and validation of a novel miRNA classifier as a prognostic signature for stage Ⅱ/Ⅲ colorectal cancer. Ann Transl Med, 2021, 9(9): 747. doi: 10.21037/atm-20-1751.
|
53. |
Han L, Shi WJ, Xie YB, et al. Diagnostic value of four serum exosome microRNAs panel for the detection of colorectal cancer. World J Gastrointest Oncol, 2021, 13(8): 970-979.
|
54. |
Silva CMS, Barros-Filho MC, Wong DVT, et al. Circulating let-7e-5p, miR-106a-5p, miR-28-3p, and miR-542-5p as a promising microRNA signature for the detection of colorectal cancer. Cancers (Basel), 2021, 13(7): 1493. doi: 10.3390/cancers13071493.
|
55. |
Dokhanchi M, Pakravan K, Zareian S, et al. Colorectal cancer cell-derived extracellular vesicles transfer miR-221-3p to promote endothelial cell angiogenesis via targeting suppressor of cytokine signaling 3. Life Sci, 2021, 285: 119937. doi: 10.1016/j.lfs.2021.119937.
|
56. |
Liu Z, Lu T, Wang Y, et al. Establishment and experimental validation of an immune miRNA signature for assessing prognosis and immune landscape of patients with colorectal cancer. J Cell Mol Med, 2021, 25(14): 6874-6886.
|
57. |
Song H, Ruan C, Xu Y, et al. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model. Exp Biol Med (Maywood), 2022, 247(11): 898-909.
|
58. |
薛源, 李沛东, 张广军. 结直肠癌患者血清外泌体microRNAs的研究进展. 中国普外基础与临床杂志, 2020, 27(9): 1169-1174.
|
59. |
Wang J, Wang X, Liu F, et al. MicroRNA-335 inhibits colorectal cancer HCT116 cells growth and epithelial-mesenchymal transition (EMT) process by targeting twist1. Pharmazie, 2017, 72(8): 475-481.
|
60. |
Ghafouri-Fard S, Khoshbakht T, Hussen BM, et al. A review on the role of miR-1246 in the pathoetiology of different cancers. Front Mol Biosci, 2022, 8: 771835. doi: 10.3389/fmolb.2021.771835.
|