1. |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin, 2020, 70(1): 7-30.
|
2. |
Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer. Lancet, 2020, 396(10251): 635-648.
|
3. |
Takahari D, Mizusawa J, Koizumi W, et al. Validation of the JCOG prognostic index in advanced gastric cancer using individual patient data from the SPIRITS and G-SOX trials. Gastric Cancer, 2017, 20(5): 757-763.
|
4. |
马东. SOX新辅助化疗方案联合胃癌根治术治疗进展期胃癌的临床评价. 医学理论与实践, 2020, 33(18): 3032-3034.
|
5. |
Chen L, Hao Y, Zhu L, et al. Monocyte to lymphocyte ratio predicts survival in patients with advanced gastric cancer undergoing neoadjuvant chemotherapy. Onco Targets Ther, 2017, 10: 4007-4016.
|
6. |
王辉, 孟松, 李超, 等. SOX方案新辅助化疗在进展期胃癌中的疗效. 临床医学研究与实践, 2019, 4(8): 7-9.
|
7. |
Pavel M, Öberg K, Falconi M, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2020, 31(7): 844-860.
|
8. |
中国抗癌协会胃癌专业委员会. 局部进展期胃癌围手术期治疗中国专家共识(2021版). 中华胃肠外科杂志, 2021, 24(9): 741-748.
|
9. |
Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada[J]. J Natl Cancer Inst. 2000.92(03): 205-216.
|
10. |
Chen C, Dong H, Shou C, et al. The correlation between computed tomography volumetry and prognosis of advanced gastric cancer treated with neoadjuvant chemotherapy. Cancer Manag Res, 2020, 12: 759-768.
|
11. |
Chen XL, Pu H, Yin LL, et al. CT volumetry for gastric adenocarcinoma: association with lymphovascular invasion and T-stages. Oncotarget, 2017, 9(15): 12432-12442.
|
12. |
Wang ZC, Wang C, Ding Y, et al. CT volumetry can potentially predict the local stage for gastric cancer after chemotherapy. Diagn Interv Radiol, 2017, 23(4): 257-262.
|
13. |
Lee SM, Kim SH, Lee JM, et al. Usefulness of CT volumetry for primary gastric lesions in predicting pathologic response to neoadjuvant chemotherapy in advanced gastric cancer. Abdom Imaging, 2009, 34(4): 430-440.
|
14. |
Lundsgaard Hansen M, Fallentin E, Lauridsen C, et al. Computed tomography (CT) perfusion as an early predictive marker for treatment response to neoadjuvant chemotherapy in gastroesophageal junction cancer and gastric cancer-a prospective study. PLoS One, 2014, 9(5): e97605. doi: 10.1371/journal.pone.0097605.
|
15. |
Giganti F, Antunes S, Salerno A, et al. Gastric cancer: texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker. Eur Radiol, 2017, 27(5): 1831-1839.
|
16. |
Chen CY, Hsu JS, Wu DC, et al. Gastric cancer: preoperative local staging with 3D multi-detector row CT-correlation with surgical and histopathologic results. Radiology, 2007, 242(2): 472-482.
|
17. |
Kim SH, Kim SH, Kim MA, et al. CT differentiation of poorly-differentiated gastric neuroendocrine tumours from well-differentiated neuroendocrine tumours and gastric adenocarcinomas. Eur Radiol, 2015, 25(7): 1946-1957.
|
18. |
Nie K, Shi L, Chen Q, et al. Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI. Clin Cancer Res, 2016, 22(21): 5256-5264.
|
19. |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
|
20. |
Limkin EJ, Sun R, Dercle L, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol, 2017, 28(6): 1191-1206.
|
21. |
Huang YQ, Liang CH, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol, 2016, 34(18): 2157-2164.
|
22. |
Choi ER, Lee HY, Jeong JY, et al. Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma. Oncotarget, 2016, 7(41): 67302-67313.
|
23. |
Sala E, Mema E, Himoto Y, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol, 2017, 72(1): 3-10.
|