1. |
Moris D, Chakedis J, Rahnemai-Azar AA, et al. Postoperative abdominal adhesions: clinical significance and advances in prevention and management. J Gastrointest Surg, 2017, 21(10): 1713-1722.
|
2. |
Arjmand MH, Hashemzehi M, Soleimani A, et al. Therapeutic potential of active components of saffron in post-surgical adhesion band formation. J Tradit Complement Med, 2021, 11(4): 328-335.
|
3. |
Soltany S. Postoperative peritoneal adhesion: an update on physiopathology and novel traditional herbal and modern medical therapeutics. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(2): 317-336.
|
4. |
Gumán-Valdivia-Gómez G, Tena-Betancourt E, de Alva-Coria PM. Postoperative abdominal adhesions: pathogenesis and current preventive techniques. Cir Cir, 2019, 87(6): 698-703.
|
5. |
Beyene RT, Kavalukas SL, Barbul A. Intra-abdominal adhesions: anatomy, physiology, pathophysiology, and treatment. Curr Probl Surg, 2015, 52(7): 271-319.
|
6. |
de Oliveira MR. Phloretin-induced cytoprotective effects on mammalian cells: a mechanistic view and future directions. Biofactors, 2016, 42(1): 13-40.
|
7. |
Aliomrani M, Sepand MR, Mirzaei HR, et al. Effects of phloretin on oxidative and inflammatory reaction in rat model of cecal ligation and puncture induced sepsis. Daru, 2016, 24(1): 15. doi: 10.1186/s40199-016-0154-9.
|
8. |
Kim J, Durai P, Jeon D, et al. Phloretin as a potent natural TLR2/1 inhibitor suppresses TLR2-induced inflammation. Nutrients, 2018, 10(7): 868. doi: 10.3390/nu10070868.
|
9. |
Wei G, Wu Y, Gao Q, et al. Effect of emodin on preventing postoperative intra-abdominal adhesion formation. Oxid Med Cell Longev, 2017, 2017: 1740317.
|
10. |
Brüggmann D, Tchartchian G, Wallwiener M, et al. Intra-abdominal adhesions: definition, origin, significance in surgical practice, and treatment options. Dtsch Arztebl Int, 2010, 107(44): 769-775.
|
11. |
Pouly JL, Darai E, Yazbeck C, et al. Postoperative abdominal adhesions and their prevention in gynaecological surgery: Ⅱ. How can they be prevented? Gynecol Obstet Fertil, 2012, 40(7-8): 419-428.
|
12. |
Zhang Y, Li X, Zhang Q, et al. Berberine hydrochloride prevents postsurgery intestinal adhesion and inflammation in rats. J Pharmacol Exp Ther, 2014, 349(3): 417-426.
|
13. |
de Oliveira PP, Bavaresco VP, Silveira-Filho LM, et al. Use of a novel polyvinyl alcohol membrane as a pericardial substitute reduces adhesion formation and inflammatory response after cardiac reoperation. J Thorac Cardiovasc Surg, 2014, 147(4): 1405-1410.
|
14. |
Chegini N. TGF-beta system: the principal profibrotic mediator of peritoneal adhesion formation. Semin Reprod Med, 2008, 26(4): 298-312.
|
15. |
Lim IJ, Phan TT, Bay BH, et al. Fibroblasts cocultured with keloid keratinocytes: normal fibroblasts secrete collagen in a keloidlike manner. Am J Physiol Cell Physiol, 2002, 283(1): C212-C222.
|
16. |
Corona R, Verguts J, Schonman R, et al. Postoperative inflammation in the abdominal cavity increases adhesion formation in a laparoscopic mouse model. Fertil Steril, 2011, 95(4): 1224-1228.
|
17. |
van Baal JO, Van de Vijver KK, Nieuwland R, et al. The histophysiology and pathophysiology of the peritoneum. Tissue Cell, 2017, 49(1): 95-105.
|
18. |
Ersoy E, Ozturk V, Yazgan A, et al. Effect of polylactic acid film barrier on intra-abdominal adhesion formation. J Surg Res, 2008, 147(1): 148-152.
|
19. |
Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin North Am, 2010, 90(6): 1227-1236.
|
20. |
Wei G, Zhou C, Wang G, et al. Keratinocyte growth factor combined with a sodium hyaluronate gel inhibits postoperative intra-abdominal adhesions. Int J Mol Sci, 2016, 17(10): 1611. doi: 10.3390/ijms17101611.
|
21. |
Yan S, Yue Y, Zeng L, et al. Ligustrazine nanoparticles nano spray’s activation on Nrf2/ARE pathway in oxidative stress injury in rats with postoperative abdominal adhesion. Ann Transl Med, 2019, 7(16): 379. doi: 10.21037/atm.2019.07.72.
|
22. |
Yung S, Chan TM. Mesothelial cells. Perit Dial Int, 2007, 27 Suppl 2: S110-S115.
|
23. |
Wu Y, Li E, Wang Z, et al. TMIGD1 inhibited abdominal adhesion formation by alleviating oxidative stress in the mitochondria of peritoneal mesothelial cells. Oxid Med Cell Longev, 2021, 2021: 9993704.
|
24. |
Wu Y, Wei G, Yu J, et al. Danhong injection alleviates postoperative intra-abdominal adhesion in a rat model. Oxid Med Cell Longev, 2019, 2019: 4591384.
|
25. |
Dierckx T, Haidar M, Grajchen E, et al. Phloretin suppresses neuroinflammation by autophagy-mediated Nrf2 activation in macrophages. J Neuroinflammation, 2021, 18(1): 148. doi: 10.1186/s12974-021-02194-z.
|