1. |
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin, 2023, 73(1): 17-48.
|
2. |
Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Rev Dis Primers, 2016, 2: 16022.
|
3. |
Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol, 2019, 10(1): 10-27.
|
4. |
Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med, 2014, 371(22): 2140-2141.
|
5. |
Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, et al. Pancreatic cancer: Advances and challenges. Cell, 2023, 186(8): 1729-1754.
|
6. |
Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med, 2012, 366(26): 2455-2465.
|
7. |
Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell, 2012, 21(6): 822-835.
|
8. |
Michelakos T, Cai L, Villani V, et al. Tumor microenvironment immune response in pancreatic ductal adenocarcinoma patients treated with neoadjuvant therapy. J Natl Cancer Inst, 2021, 113(2): 182-191.
|
9. |
Le DT, Wang-Gillam A, Picozzi V, et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol, 2015, 33(12): 1325-1333.
|
10. |
Li K, Tandurella JA, Gai J, et al. Multi-omic analyses of changes in the tumor microenvironment of pancreatic adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy. Cancer Cell, 2022, 40(11): 1374-1391.
|
11. |
Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 2017, 547(7662): 217-221.
|
12. |
Beatty GL, Haas AR, Maus MV, et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res, 2014, 2(2): 112-120.
|
13. |
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382): 1350-1355.
|
14. |
Royal RE, Levy C, Turner K, et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother, 2010, 33(8): 828-833.
|
15. |
Le DT, Lutz E, Uram JN, et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother, 2013, 36(7): 382-389.
|
16. |
Beatty GL, O’Hara MH, Lacey SF, et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology, 2018, 155(1): 29-32.
|
17. |
Du H, Hirabayashi K, Ahn S, et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells. Cancer Cell, 2019, 35(2): 221-237.
|
18. |
Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol, 2016, 27(7): 1362.
|
19. |
Kamath SD, Kalyan A, Kircher S, et al. Ipilimumab and gemcitabine for advanced pancreatic cancer: A phaseⅠ b study. Oncologist, 2020, 25(5): e808-e815.
|
20. |
Le DT, Picozzi VJ, Ko AH, et al. Results from a phaseⅡ b, randomized, multicenter study of GVAX pancreas and CRS-207 compared with chemotherapy in adults with previously treated metastatic pancreatic adenocarcinoma (ECLIPSE Study). Clin Cancer Res, 2019, 25(18): 5493-5502.
|
21. |
Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med, 2018, 378(5): 439-448.
|
22. |
Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour- specific mutant antigens. Nature, 2014, 515(7528): 577-581.
|
23. |
Birnbaum DJ, Finetti P, Lopresti A, et al. Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget, 2016, 7(44): 71198-71210.
|
24. |
Isazadeh A, Hajazimian S, Garshasbi H, et al. Resistance mechanisms to immune checkpoints blockade by monoclonal antibody drugs in cancer immunotherapy: Focus on myeloma. J Cell Physiol, 2021, 236(2): 791-805.
|
25. |
Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell, 2015, 27(4): 450-461.
|
26. |
Doroshow DB, Bhalla S, Beasley MB, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol, 2021, 18(6): 345-362.
|
27. |
Koikawa K, Kibe S, Suizu F, et al. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy. Cell, 2021, 184(18): 4753-4771.
|
28. |
Mace TA, Ameen Z, Collins A, et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res, 2013, 73(10): 3007-3018.
|
29. |
McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell, 2017, 168(4): 613-628.
|
30. |
Somani VK, Zhang D, Dodhiawala PB, et al. IRAK4 signaling drives resistance to checkpoint immunotherapy in pancreatic ductal adenocarcinoma. Gastroenterology, 2022, 162(7): 2047-2062.
|
31. |
Lybaert L, Lefever S, Fant B, et al. Challenges in neoantigen-directed therapeutics. Cancer Cell, 2023, 41(1): 15-40.
|
32. |
Tang S, Shi L, Luker BT, et al. Modulation of the tumor microenvironment by armed vesicular stomatitis virus in a syngeneic pancreatic cancer model. Virol J, 2022, 19(1): 32.
|
33. |
Kemp SB, Cheng N, Markosyan N, et al. Efficacy of a small-molecule inhibitor of krasG12D in immunocompetent models of pancreatic cancer. Cancer Discov, 2023, 13(2): 298-311.
|
34. |
Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 2014, 515(7528): 568-571.
|
35. |
Chakrabarti S, Bucheit L, Starr JS, et al. Detection of microsatellite instability-high (MSI-H) by liquid biopsy predicts robust and durable response to immunotherapy in patients with pancreatic cancer. J Immunother Cancer, 2022, 10(6): e004485.
|
36. |
Galluzzi L, Buqué A, Kepp O, et al. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell, 2015, 28(6): 690-714.
|
37. |
Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693): 544-548.
|
38. |
Johnston RJ, Comps-Agrar L, Hackney J, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell, 2014, 26(6): 923-937.
|
39. |
Michelakos T, Kontos F, Barakat O, et al. B7-H3 targeted antibody-based immunotherapy of malignant diseases. Expert Opin Biol Ther, 2021, 21(5): 587-602.
|
40. |
Balachandran VP, Łuksza M, Zhao JN, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature, 2017, 551(7681): 512-516.
|
41. |
Zemek RM, De Jong E, Chin WL, et al. Sensitization to immune checkpoint blockade through activation of a STAT1/NK axis in the tumor microenvironment. Sci Transl Med, 2019, 11(501): eaav7816.
|
42. |
Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer. Science, 2020, 367(6481): eaba7365.
|