| 1. | Chaufour X, Gaudric J, Goueffic Y,  et al. A multicenter experience with infected abdominal aortic endograft explantation. J Vasc Surg, 2017, 65(2): 372-380. | 
				                                                        
				                                                            
				                                                                | 2. | Ducasse E, Calisti A, Speziale F,  et al. Aortoiliac stent graft infection: current problems and management. Ann Vasc Surg, 2004, 18(5): 521-526. | 
				                                                        
				                                                            
				                                                                | 3. | Sorber R, Osgood MJ, Abularrage CJ,  et al. Treatment of aortic graft infection in the endovascular era. Curr Infect Dis Rep, 2017, 19(11): 40. doi: 10.1007/s11908-017-0598-1. | 
				                                                        
				                                                            
				                                                                | 4. | Goodman SB, Gallo J. Periprosthetic osteolysis: mechanisms, prevention and treatment. J Clin Med, 2019, 8(12): 2091. doi: 10.3390/jcm8122091. | 
				                                                        
				                                                            
				                                                                | 5. | 李芳, 吴可通, 赵珺, 等. 血管支架及其在动脉瘤治疗中的发展趋势. 中国组织工程研究, 2021, 25(34): 5561-5569. | 
				                                                        
				                                                            
				                                                                | 6. | Bangalore S, Kumar S, Fusaro M,  et al. Short- and long-term outcomes with drug-eluting and bare-metal coronary stents: a mixed-treatment comparison analysis of 117 762 patient-years of follow-up from randomized trials. Circulation, 2012, 125(23): 2873-2891. | 
				                                                        
				                                                            
				                                                                | 7. | Fu J, Su Y, Qin YX,  et al. Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc. Biomaterials, 2020, 230: 119641. doi: 10.1016/j.biomaterials.2019.119641. | 
				                                                        
				                                                            
				                                                                | 8. | Liang Q, Ge S, Liu C,  et al. The effect of composite PHB coating on the biological properties of a magnesium based alloy. J Biomater Appl, 2021, 35(10): 1264-1274. | 
				                                                        
				                                                            
				                                                                | 9. | Wlodarczak A, Montorsi P, Torzewski J,  et al. One- and two-year clinical outcomes of treatment with resorbable magnesium scaffolds for coronary artery disease: the prospective, international, multicentre BIOSOLVE-Ⅳ registry. EuroIntervention, 2023, 19(3): 232-239. | 
				                                                        
				                                                            
				                                                                | 10. | Zhu J, Zhang X, Niu J,  et al. Biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery. Sci Rep, 2021, 11(1): 7330. doi: 10.1038/s41598-021-86803-0. | 
				                                                        
				                                                            
				                                                                | 11. | Su Y, Cockerill I, Wang Y,  et al. Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol, 2019, 37(4): 428-441. | 
				                                                        
				                                                            
				                                                                | 12. | Xiang Y, Mao C, Liu X,  et al. Rapid and superior bacteria killing of carbon quantum dots/ZnO decorated injectable folic acid-conjugated PDA hydrogel through dual-light triggered ROS and membrane permeability. Small, 2019, 15(22): e1900322. doi: 10.1002/smll.201900322. | 
				                                                        
				                                                            
				                                                                | 13. | Abdelkader DH, Negm WA, Elekhnawy E,  et al. Zinc oxide nanoparticles as potential delivery carrier: green synthesis by aspergillus niger endophytic fungus, characterization, and  in vitro/ in vivo antibacterial activity. Pharmaceuticals (Basel), 2022, 15(9): 1057. doi: 10.3390/ph15091057. | 
				                                                        
				                                                            
				                                                                | 14. | Shearier ER, Bowen PK, He W, et al. In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc. ACS Biomater Sci Eng, 2016, 2(4): 634-642. | 
				                                                        
				                                                            
				                                                                | 15. | Owhal A, Choudhary M, Pingale AD, et al. Non-cytotoxic zinc/f-graphene nanocomposite for tunable degradation and superior tribo-mechanical properties: synthesized via modified electro co-deposition route. Mater Today Commun, 2023, 34: 105112. | 
				                                                        
				                                                            
				                                                                | 16. | Reddy MSB, Ponnamma D, Choudhary R,  et al. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel), 2021, 13(7): 1105. doi: 10.3390/polym13071105. | 
				                                                        
				                                                            
				                                                                | 17. | Wahba MI. Enhancement of the mechanical properties of chitosan. J Biomater Sci Polym Ed, 2020, 31(3): 350-375. | 
				                                                        
				                                                            
				                                                                | 18. | Severino R, Vu KD, Donsì F,  et al. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against  Listeria innocua in green beans. Int J Food Microbiol, 2014, 191: 82-88. | 
				                                                        
				                                                            
				                                                                | 19. | Sun W, Zhang Y, Gregory DA,  et al. Patterning the neuronal cells  via inkjet printing of self-assembled peptides on silk scaffolds. Prog Nat Sci-Mater, 2020, 30(5): 686-696. | 
				                                                        
				                                                            
				                                                                | 20. | Song W, Muthana M, Mukherjee J,  et al. Magnetic-silk core-shell nanoparticles as potential carriers for targeted delivery of curcumin into human breast cancer cells. ACS Biomater Sci Eng, 2017, 3(6): 1027-1038. | 
				                                                        
				                                                            
				                                                                | 21. | Zhang C, Zhang Y, Shao H,  et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl Mater Interfaces, 2016, 8(5): 3349-3358. | 
				                                                        
				                                                            
				                                                                | 22. | Melke J, Midha S, Ghosh S,  et al. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater, 2016, 31: 1-16. | 
				                                                        
				                                                            
				                                                                | 23. | Zhao C, Deng B, Chen G,  et al. Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Research, 2016, 9(4): 963-973. | 
				                                                        
				                                                            
				                                                                | 24. | Tsugawa T, Hatakeyama K, Matsuda J,  et al. Synthesis of oxygen functional group-controlled monolayer graphene oxide. Bulletin of the Chemical Society of Japan, 2021, 94(9): 2195-2201. | 
				                                                        
				                                                            
				                                                                | 25. | Hu W, Peng C, Luo W,  et al. Graphene-based antibacterial paper. ACS Nano, 2010, 4(7): 4317-4323. | 
				                                                        
				                                                            
				                                                                | 26. | Misra SK, Ostadhossein F, Babu R, et al. 3D-printed multidrug-eluting stent from graphene-nanoplatelet-doped biodegradable polymer composite. Adv Healthc Mater, 2017, 6(11). doi: 10.1002/adhm.201700008. | 
				                                                        
				                                                            
				                                                                | 27. | Pan C, Zhao Y, Yang Y,  et al. Immobilization of bioactive complex on the surface of magnesium alloy stent material to simultaneously improve anticorrosion, hemocompatibility and antibacterial activities. Colloids Surf B Biointerfaces, 2021, 199: 111541. doi: 10.1016/j.colsurfb.2020.111541. | 
				                                                        
				                                                            
				                                                                | 28. | Yang MC, Tsou HM, Hsiao YS,  et al. Electrochemical polymerization of PEDOT-graphene oxide-heparin composite coating for anti-fouling and anti-clotting of cardiovascular stents. Polymers (Basel), 2019, 11(9): 1520. doi: 10.3390/polym11091520. | 
				                                                        
				                                                            
				                                                                | 29. | ElSawy AM, Attia NF, Mohamed HI,  et al. Innovative coating based on graphene and their decorated nanoparticles for medical stent applications. Mater Sci Eng C Mater Biol Appl, 2019, 96: 708-715. | 
				                                                        
				                                                            
				                                                                | 30. | Wang Y, Zhang W, Zhang J,  et al. Fabrication of a novel polymer-free nanostructured drug-eluting coating for cardiovascular stents. ACS Appl Mater Interfaces, 2013, 5(20): 10337-10345. | 
				                                                        
				                                                            
				                                                                | 31. | Chen R, Huang C, Ke Q,  et al. Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids Surf B Biointerfaces, 2010, 79(2): 315-325. | 
				                                                        
				                                                            
				                                                                | 32. | Villani M, Consonni R, Canetti M,  et al. Polyurethane-based composites: effects of antibacterial fillers on the physical-mechanical behavior of thermoplastic polyurethanes. Polymers (Basel), 2020, 12(2): 362. doi: 10.3390/polym12020362. | 
				                                                        
				                                                            
				                                                                | 33. | Wang HJ, Hao MF, Wang G,  et al. Zein nanospheres assisting inorganic and organic drug combination to overcome stent implantation-induced thrombosis and infection. Sci Total Environ, 2023, 873: 162438. doi: 10.1016/j.scitotenv.2023.162438. | 
				                                                        
				                                                            
				                                                                | 34. | Lu Z, Wu Y, Cong Z,  et al. Effective and biocompatible antibacterial surfaces  via facile synthesis and surface modification of peptide polymers. Bioact Mater, 2021, 6(12): 4531-4541. | 
				                                                        
				                                                            
				                                                                | 35. | Wilson AC, Chou SF, Lozano R,  et al. Thermal and physico-mechanical characterizations of thromboresistant polyurethane films. Bioengineering (Basel), 2019, 6(3): 69. doi: 10.3390/bioengineering6030069. | 
				                                                        
				                                                            
				                                                                | 36. | Hamad K, Kaseem M, Ayyoob M,  et al. Polylactic acid blends: the future of green, light and tough. Prog Polym Sci, 2018, 85: 83-127. | 
				                                                        
				                                                            
				                                                                | 37. | Scaffaro R, Maio A, Sutera F,  et al. Degradation and recycling of films based on biodegradable polymers: a short review. Polymers (Basel), 2019, 11(4): 651. doi: 10.3390/polym11040651. | 
				                                                        
				                                                            
				                                                                | 38. | Douglass M, Hopkins S, Pandey R,  et al. S-nitrosoglutathione-based nitric oxide-releasing nanofibers exhibit dual antimicrobial and antithrombotic activity for biomedical applications. Macromol Biosci, 2021, 21(1): e2000248. doi: 10.1002/mabi.202000248. | 
				                                                        
				                                                            
				                                                                | 39. | 魏雨, 张景迅, 范娟娟, 等. 心血管支架表面改性及应用. 生物医学工程学杂志, 2016, 33(3): 593-597, 608. | 
				                                                        
				                                                            
				                                                                | 40. | Xing X, Han Y, Cheng H. Biomedical applications of chitosan/silk fibroin composites: a review. Int J Biol Macromol, 2023, 240: 124407. doi: 10.1016/j.ijbiomac.2023.124407. | 
				                                                        
				                                                            
				                                                                | 41. | Li L, Wang X, Li D,  et al. LBL deposition of chitosan/heparin bilayers for improving biological ability and reducing infection of nanofibers. Int J Biol Macromol, 2020, 154: 999-1006. | 
				                                                        
				                                                            
				                                                                | 42. | Katepetch C, Rujiravanit R, Tamura H. Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted  in situ synthesis. Cellulose, 2013, 20(3): 1275-1292. | 
				                                                        
				                                                            
				                                                                | 43. | Yang G, Wang C, Hong F,  et al. Preparation and characterization of BC/PAM-AgNPs nanocomposites for antibacterial applications. Carbohydr Polym, 2015, 115: 636-642. | 
				                                                        
				                                                            
				                                                                | 44. | Wang J, Wan Y, Huang Y. Immobilisation of heparin on bacterial cellulose-chitosan nano-fibres surfaces  via the cross-linking technique. IET Nanobiotechnol, 2012, 6(2): 52-57. | 
				                                                        
				                                                            
				                                                                | 45. | Butchosa N, Brown C, Larsson PT, et al. Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chem, 2013, 15(12): 3404–3413. | 
				                                                        
				                                                            
				                                                                | 46. | Mufty H, Van Den Eynde J, Meuris B,  et al. Pre-clinical  in vitro models of vascular graft coating in the prevention of vascular graft infection: a systematic review. Eur J Vasc Endovasc Surg, 2022, 63(1): 119-137. | 
				                                                        
				                                                            
				                                                                | 47. | Khan K, Javed S. Functionalization of inorganic nanoparticles to augment antimicrobial efficiency: a critical analysis. Curr Pharm Biotechnol, 2018, 19(7): 523-536. | 
				                                                        
				                                                            
				                                                                | 48. | Spina CJ, Notarandrea-Alfonzo J, Hay M,  et al. Silver oxynitrate gel formulation for enhanced stability and antibiofilm efficacy. Int J Pharm, 2020, 580: 119197. doi: 10.1016/j.ijpharm.2020.119197. | 
				                                                        
				                                                            
				                                                                | 49. | Durán N, Durán M, de Jesus MB,  et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine, 2016, 12(3): 789-799. | 
				                                                        
				                                                            
				                                                                | 50. | Morones JR, Elechiguerra JL, Camacho A,  et al. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10): 2346-2353. | 
				                                                        
				                                                            
				                                                                | 51. | Sohn EK, Johari SA, Kim TG,  et al. Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res Int, 2015, 2015: 893049. doi: 10.1155/2015/893049. | 
				                                                        
				                                                            
				                                                                | 52. | Shahverdi AR, Minaeian S, Shahverdi HR,  et al. Rapid synthesis of silver nanoparticles using culture supernatants of enterobacteria: a novel biological approach. Process Biochemistry, 2007, 42(5): 919-923. | 
				                                                        
				                                                            
				                                                                | 53. | Senocak TC, Ezirmik KV, Cengiz S. The antibacterial properties and corrosion behavior of silver-doped niobium oxynitride coatings. Mater Today Commun, 2022, 32: 103975. doi: 10.1016/j.mtcomm.2022.103975. | 
				                                                        
				                                                            
				                                                                | 54. | Huang B, Jing F, Akhavan B,  et al. Multifunctional Ti-xCu coatings for cardiovascular interfaces: control of microstructure and surface chemistry. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109969. doi: 10.1016/j.msec.2019.109969. | 
				                                                        
				                                                            
				                                                                | 55. | Ren Q, Qin L, Jing F,  et al. Reactive magnetron co-sputtering of Ti-xCuO coatings: multifunctional interfaces for blood-contacting devices. Mater Sci Eng C Mater Biol Appl, 2020, 116: 111198. doi: 10.1016/j.msec.2020.111198. | 
				                                                        
				                                                            
				                                                                | 56. | He X, Zhang G, Zhang H, et al. Cu and Si co-doped microporous TiO2 coating for osseointegration by the coordinated stimulus action. Appl Surf Sci, 2020, 503: 144072. doi:10.1016/j.apsusc.2019.144072. | 
				                                                        
				                                                            
				                                                                | 57. | Zhang X, Li J, Wang X,  et al. Effects of copper nanoparticles in porous TiO2 coatings on bacterial resistance and cytocompatibility of osteoblasts and endothelial cells. Mater Sci Eng C Mater Biol Appl, 2018, 82: 110-120. | 
				                                                        
				                                                            
				                                                                | 58. | Liu R, Tang Y, Liu H,  et al. Effects of combined chemical design (Cu addition) and topographical modification (SLA) of Ti-Cu/SLA for promoting osteogenic, angiogenic and antibacterial activities. J Mater Sci Technol, 2020, 47: 202-215. | 
				                                                        
				                                                            
				                                                                | 59. | Liu H, Zhang X, Jin S, et al. Effect of copper-doped titanium nitride coating on angiogenesis. Materials Letters, 2020, 269: 127634. doi: 10.1016/j.matlet.2020.127634. | 
				                                                        
				                                                            
				                                                                | 60. | Zhang Y, Cui S, Cao S, et al. To improve the angiogenesis of endothelial cells on Ti-Cu alloy by the synergistic effects of Cu ions release and surface nanostructure. Surf Coat Tech, 2022, 433: 128116. doi: 10.1016/j.surfcoat.2022.128116. | 
				                                                        
				                                                            
				                                                                | 61. | Zhao X, Cai D, Hu J,  et al. A high-hydrophilic Cu2O-TiO2/Ti2O3/TiO coating on Ti-5Cu alloy: perfect antibacterial property and rapid endothelialization potential. Biomater Adv, 2022, 140: 213044. doi: 10.1016/j.bioadv.2022.213044. | 
				                                                        
				                                                            
				                                                                | 62. | Liu Y, Luo W, Yang H,  et al. Stimulation of nitric oxide production contributes to the antiplatelet and antithrombotic effect of new peptide pENW (pGlu-Asn-Trp). Thromb Res, 2015, 136(2): 319-327. | 
				                                                        
				                                                            
				                                                                | 63. | Vahora H, Khan MA, Alalami U,  et al. The potential role of nitric oxide in halting cancer progression through chemoprevention. J Cancer Prev, 2016, 21(1): 1-12. | 
				                                                        
				                                                            
				                                                                | 64. | Wang X, Jolliffe A, Carr B,  et al. Nitric oxide-releasing semi-crystalline thermoplastic polymers: preparation, characterization and application to devise anti-inflammatory and bactericidal implants. Biomater Sci, 2018, 6(12): 3189-3201. | 
				                                                        
				                                                            
				                                                                | 65. | Friedman A, Blecher K, Sanchez D,  et al. Susceptibility of Gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence, 2011, 2(3): 217-221. | 
				                                                        
				                                                            
				                                                                | 66. | Wang L, Hou Z, Pranantyo D,  et al. High-density three-dimensional network of covalently linked nitric oxide donors to achieve antibacterial and antibiofilm surfaces. ACS Appl Mater Interfaces, 2021, 13(29): 33745-33755. | 
				                                                        
				                                                            
				                                                                | 67. | Aboshady I, Raad I, Vela D,  et al. Prevention of perioperative vascular prosthetic infection with a novel triple antimicrobial-bonded arterial graft. J Vasc Surg, 2016, 64(6): 1805-1814. | 
				                                                        
				                                                            
				                                                                | 68. | Talapko J, Meštrović T, Juzbašić M,  et al. Antimicrobial peptides-mechanisms of action, antimicrobial effects and clinical applications. Antibiotics (Basel), 2022, 11(10): 1417. doi: 10.3390/antibiotics11101417. | 
				                                                        
				                                                            
				                                                                | 69. | Ma L, Xie X, Liu H,  et al. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics, 2020, 10(3): 1373-1390. | 
				                                                        
				                                                            
				                                                                | 70. | Ong ZY, Wiradharma N, Yang YY. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev, 2014, 78: 28-45. | 
				                                                        
				                                                            
				                                                                | 71. | Gomes B, Augusto MT, Felício MR,  et al. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv, 2018, 36(2): 415-429. | 
				                                                        
				                                                            
				                                                                | 72. | Rima M, Rima M, Fajloun Z,  et al. Antimicrobial peptides: a potent alternative to antibiotics. Antibiotics (Basel), 2021, 10(9): 1095. doi: 10.3390/antibiotics10091095. | 
				                                                        
				                                                            
				                                                                | 73. | Hale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther, 2007, 5(6): 951-959. | 
				                                                        
				                                                            
				                                                                | 74. | Kang X, Dong F, Shi C,  et al. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data, 2019, 6(1): 148. doi: 10.1038/s41597-019-0154-y. | 
				                                                        
				                                                            
				                                                                | 75. | Matthyssen T, Li W, Holden JA,  et al. The potential of modified and multimeric antimicrobial peptide materials as superbug killers. Front Chem, 2022, 9: 795433. doi: 10.3389/fchem.2021.795433. | 
				                                                        
				                                                            
				                                                                | 76. | Oyama LB, Olleik H, Teixeira ACN,  et al. In silico identification of two peptides with antibacterial activity against multidrug-resistant  Staphylococcus aureus. NPJ Biofilms Microbiomes, 2022, 8(1): 58. doi: 10.1038/s41522-022-00320-0. | 
				                                                        
				                                                            
				                                                                | 77. | Ramalho SR, de Cássia Orlandi Sardi J, Júnior EC,  et al. The synthetic antimicrobial peptide IKR18 displays anti-infectious properties in Galleria mellonella  in vivo model. Biochim Biophys Acta Gen Subj, 2022, 1866(12): 130244. doi: 10.1016/j.bbagen.2022.130244. | 
				                                                        
				                                                            
				                                                                | 78. | Alwine S, Chen C, Shen L,  et al. Crosslinkable fluorophenoxy-substituted poly[bis(octafluoropentoxy) phosphazene] biomaterials with improved antimicrobial effect and hemocompatibility. J Biomed Mater Res B Appl Biomater, 2023, 111(8): 1533-1545. | 
				                                                        
				                                                            
				                                                                | 79. | Chen CQ, Li ZS, Li XZ, et al. Dual-functional antimicrobial coating based on the combination of zwitterionic and quaternary ammonium cation from rosin acid. Compos Part B-Eng, 2022, 232: 109623. doi: 10.1016/j.compositesb.2022.109623. | 
				                                                        
				                                                            
				                                                                | 80. | Bouloussa H, Saleh-mghir A, Valotteau C, et al. A graftable quaternary ammonium biocidal polymer reduces biofilm formation and ensures biocompatibility of medical devices.Adv Mater Interfaces, 2021, 8(5): 2001516. doi: 10.1002/admi.202001516. | 
				                                                        
				                                                            
				                                                                | 81. | Janković A, Eraković S, Ristoscu C,  et al. Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation. J Mater Sci Mater Med, 2015, 26(1): 5333. doi: 10.1007/s10856-014-5333-y. | 
				                                                        
				                                                            
				                                                                | 82. | Saratale RG, Saratale GD, Ghodake G,  et al. Wheat straw extracted lignin in silver nanoparticles synthesis: expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. Int J Biol Macromol, 2019, 128: 391-400. | 
				                                                        
				                                                            
				                                                                | 83. | Yan Y, Zhang L, Zhao X,  et al. Utilization of lignin upon successive fractionation and esterification in polylactic acid (PLA)/lignin biocomposite. Int J Biol Macromol, 2022, 203: 49-57. | 
				                                                        
				                                                            
				                                                                | 84. | Cloutier M, Mantovani D, Rosei F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol, 2015, 33(11): 637-652. | 
				                                                        
				                                                            
				                                                                | 85. | Ajdnik U, Zemljič LF, Plohl O,  et al. Bioactive functional nanolayers of chitosan-lysine surfactant with single- and mixed-protein-repellent and antibiofilm properties for medical implants. ACS Appl Mater Interfaces, 2021, 13(20): 23352-23368. |