- 1. Department of General Surgery, Nanjing First Hospital, Nanjing 210001, P. R. China;
Citation: LI Xian, NI Yongjun, LÜ Chengyu. Research progress on molecular mechanism and treatment of liver metastasis in gastric cancer. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2024, 31(1): 115-122. doi: 10.7507/1007-9424.202308064 Copy
1. | Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424. |
2. | Kodera Y, Ito S, Mochizuki Y, et al. The number of metastatic lymph nodes is a significant risk factor for bone metastasis and poor outcome after surgery for linitis plastica-type gastric carcinoma. World J Surg, 2008, 32(9): 2015-2020. |
3. | Petrelli F, Coinu A, Cabiddu M, et al. Hepatic resection for gastric cancer liver metastases: a systematic review and meta-analysis. J Surg Oncol, 2015, 111(8): 1021-1027. |
4. | Yoshikawa T, Sasako M. Gastrointestinal cancer: adjuvant chemotherapy after D2 gastrectomy for gastric cancer. Nat Rev Clin Oncol, 2012, 9(4): 192-194. |
5. | Jin X, Zhu Z, Shi Y. Metastasis mechanism and gene/protein expression in gastric cancer with distant organs metastasis. Bull Cancer, 2014, 101(1): E1-E12. doi: 10.1684/bdc.2013.1882. |
6. | Li PF, Chen SC, Xia T, et al. Non-coding RNAs and gastric cancer. World J Gastroenterol, 2014, 20(18): 5411-5419. |
7. | Hwang J, Min BH, Jang J, et al. MicroRNA expression profiles in gastric carcinogenesis. Sci Rep, 2018, 8(1): 14393. doi: 10.1038/s41598-018-32782-8. |
8. | Li X, Zhang Y, Shi Y, et al. MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer. J Cell Mol Med, 2011, 15(9): 1887-1895. |
9. | Gialeli C, Gungor B, Blom AM. Novel potential inhibitors of complement system and their roles in complement regulation and beyond. Mol Immunol, 2018, 102: 73-83. |
10. | Chen XL, Hong LL, Wang KL, et al. Deregulation of CSMD1 targeted by microRNA-10b drives gastric cancer progression through the NF-κB pathway. Int J Biol Sci, 2019, 15(10): 2075-2086. |
11. | Xie T, Wu D, Li S, et al. microRNA-582 potentiates liver and lung metastasis of gastric carcinoma cells through the FOXO3-Mediated PI3K/Akt/Snail pathway. Cancer Manag Res, 2020, 12: 5201-5212. |
12. | Zhang C, Han Y, Huang H, et al. High NR2F2 transcript level is associated with increased survival and its expression inhibits TGF-β-dependent epithelial-mesenchymal transition in breast cancer. Breast Cancer Res Treat, 2014, 147(2): 265-281. |
13. | Yao J, Deng B, Zheng L, et al. miR-27b is upregulated in cervical carcinogenesis and promotes cell growth and invasion by regulating CDH11 and epithelial-mesenchymal transition. Oncol Rep, 2016, 35(3): 1645-1651. |
14. | Feng Q, Wu X, Li F, et al. miR-27b inhibits gastric cancer metastasis by targeting NR2F2. Protein Cell, 2017, 8(2): 114-122. |
15. | Nishida N, Mimori K, Fabbri M, et al. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin Cancer Res, 2011, 17(9): 2725-2733. |
16. | Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet, 2010, 376(9742): 687-697. |
17. | Hashiguchi Y, Nishida N, Mimori K, et al. Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int J Oncol, 2012, 40(5): 1477-1482. |
18. | Wang Z, Yao L, Li Y, et al. miR-337-3p inhibits gastric tumor metastasis by targeting ARHGAP10. Mol Med Rep, 2020, 21(2): 705-719. |
19. | Tam C, Wong JH, Tsui SKW, et al. LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol, 2019, 103(12): 4649-4677. |
20. | Zhuo W, Liu Y, Li S, et al. Long noncoding RNA GMAN, up-regulated in gastric cancer tissues, is associated with metastasis in patients and promotes translation of Ephrin A1 by competitively binding GMAN-AS. Gastroenterology, 2019, 156(3): 676-691. e11. doi: 10.1053/j.gastro.2018.10.054. |
21. | Ba MC, Ba Z, Long H, et al. LncRNA AC0938181. Accelerates gastric cancer metastasis by epigenetically promoting PDK1 expression. Cell Death Dis, 2020, 11(1): 64. |
22. | Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol, 2015, 12(4): 381-388. |
23. | Chen B, Huang S. Circular RNA: an emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett, 2018, 418: 41-50. |
24. | Zhang J, Hou L, Liang R, et al. CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol Cancer, 2019, 18(1): 80. doi: 10.1186/s12943-019-1015-1. |
25. | Geng X, Wang J, Zhang C, et al. Circular RNA circCOL6A3_030 is involved in the metastasis of gastric cancer by encoding polypeptide. Bioengineered, 2021, 12(1): 8202-8216. |
26. | Lee MW, Kim GH, Jeon HK, et al. Clinical application of circulating tumor cells in gastric cancer. Gut Liver, 2019, 13(4): 394-401. |
27. | Huang X, Gao P, Sun J, et al. Clinicopathological and prognostic significance of circulating tumor cells in patients with gastric cancer: a meta-analysis. Int J Cancer, 2015, 136(1): 21-33. |
28. | Hüsemann Y, Geigl JB, Schubert F, et al. Systemic spread is an early step in breast cancer. Cancer Cell, 2008, 13(1): 58-68. |
29. | Yu M. Metastasis stemming from circulating tumor cell clusters. Trends Cell Biol, 2019, 29(4): 275-276. |
30. | Chen Y, Yuan J, Li Y, et al. Profiling heterogenous sizes of circulating tumor microemboli to track therapeutic resistance and prognosis in advanced gastric cancer. Hum Cell, 2021, 34(5): 1446-1454. |
31. | Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell, 2010, 39(1): 133-144. |
32. | Zhang H, Deng T, Liu R, et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun, 2017, 8: 15016. doi: 10.1038/ncomms15016. |
33. | Alderton GK. Metastasis. Exosomes drive premetastatic niche formation. Nat Rev Cancer, 2012, 12(7): 447. doi: 10.1038/nrc3304. |
34. | Qiu S, Xie L, Lu C, et al. Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis. J Exp Clin Cancer Res, 2022, 41(1): 296. doi: 10.1186/s13046-022-02499-8. |
35. | Kumata Y, Iinuma H, Suzuki Y, et al. Exosome-encapsulated microRNA-23b as a minimally invasive liquid biomarker for the prediction of recurrence and prognosis of gastric cancer patients in each tumor stage. Oncol Rep, 2018, 40(1): 319-330. |
36. | Zhang Y, Han T, Feng D, et al. Screening of non-invasive miRNA biomarker candidates for metastasis of gastric cancer by small RNA sequencing of plasma exosomes. Carcinogenesis, 2020, 41(5): 582-590. |
37. | Kwa MQ, Herum KM, Brakebusch C. Cancer-associated fibroblasts: how do they contribute to metastasis? Clin Exp Metastasis, 2019, 36(2): 71-86. |
38. | Curtis M, Kenny HA, Ashcroft B, et al. Fibroblasts mobilize tumor cell glycogen to promote proliferation and metastasis. Cell Metab, 2019, 29(1): 141-155. e9. |
39. | Luo Q, Wang CQ, Yang LY, et al. FOXQ1/NDRG1 axis exacerbates hepatocellular carcinoma initiation via enhancing crosstalk between fibroblasts and tumor cells. Cancer Lett, 2018, 417: 21-34. |
40. | Li Q, Zhu CC, Ni B, et al. Lysyl oxidase promotes liver metastasis of gastric cancer via facilitating the reciprocal interactions between tumor cells and cancer associated fibroblasts. EBioMedicine, 2019, 49: 157-171. |
41. | Zhao Z, Zhang Y, Guo E, et al. Periostin secreted from podoplanin-positive cancer-associated fibroblasts promotes metastasis of gastric cancer by regulating cancer stem cells via AKT and YAP signaling pathway. Mol Carcinog, 2023, 62(5): 685-699. |
42. | Tanaka H, Muguruma K, Toyokawa T, et al. Differential impact of the neutrophil-lymphocyte ratio on the survival of patients with stage Ⅳ gastric cancer. Dig Surg, 2014, 31(4-5): 327-333. |
43. | Zhang W, Gu J, Chen J, et al. Interaction with neutrophils promotes gastric cancer cell migration and invasion by inducing epithelial-mesenchymal transition. Oncol Rep, 2017, 38(5): 2959-2966. |
44. | Li S, Cong X, Gao H, et al. Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. J Exp Clin Cancer Res, 2019, 38(1): 6. doi: 10.1186/s13046-018-1003-0. |
45. | Wang TT, Zhao YL, Peng LS, et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut, 2017, 66(11): 1900-1911. |
46. | Zhang J, Jin HY, Wu Y, et al. Hypoxia-induced LncRNA PCGEM1 promotes invasion and metastasis of gastric cancer through regulating SNAI1. Clin Transl Oncol, 2019, 21(9): 1142-1151. |
47. | Koyasu S, Kobayashi M, Goto Y, et al. Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge. Cancer Sci, 2018, 109(3): 560-571. |
48. | Wan J, Chai H, Yu Z, et al. HIF-1α effects on angiogenic potential in human small cell lung carcinoma. J Exp Clin Cancer Res, 2011, 30(1): 77. doi: 10.1186/1756-9966-30-77. |
49. | Chen L, Shi Y, Yuan J, et al. HIF-1 alpha overexpression correlates with poor overall survival and disease-free survival in gastric cancer patients post-gastrectomy. PLoS One, 2014, 9(3): e90678. doi: 10.1371/journal.pone.0090678. |
50. | Katoh M. Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer. Cancer Biol Ther, 2007, 6(6): 832-839. |
51. | Yamamoto H, Kitadai Y, Yamamoto H, et al. Laminin gamma2 mediates Wnt5a-induced invasion of gastric cancer cells. Gastroenterology, 2009, 137(1): 242-252, 252. e1-e6. doi: 10.1053/j.gastro.2009.02.003. |
52. | Hanaki H, Yamamoto H, Sakane H, et al. An anti-Wnt5a antibody suppresses metastasis of gastric cancer cells in vivo by inhibiting receptor-mediated endocytosis. Mol Cancer Ther, 2012, 11(2): 298-307. |
53. | Fu Y, Chen Y, Huang J, et al. RYK, a receptor of noncanonical Wnt ligand Wnt5a, is positively correlated with gastric cancer tumorigenesis and potential of liver metastasis. Am J Physiol Gastrointest Liver Physiol, 2020, 318(2): G352-G360. |
54. | Fang WL, Huang KH, Lan YT, et al. Mutations in PI3K/AKT pathway genes and amplifications of PIK3CA are associated with patterns of recurrence in gastric cancers. Oncotarget, 2016, 7(5): 6201-6220. |
55. | Yokoyama H, Ikehara Y, Kodera Y, et al. Molecular basis for sensitivity and acquired resistance to gefitinib in HER2-overexpressing human gastric cancer cell lines derived from liver metastasis. Br J Cancer, 2006, 95(11): 1504-1513. |
56. | Hsieh AC, Moasser MM. Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br J Cancer, 2007, 97(4): 453-457. |
57. | Okines A, Cunningham D, Chau I. Targeting the human EGFR family in esophagogastric cancer. Nat Rev Clin Oncol, 2011, 8(8): 492-503. |
58. | Kim BK, Cheong JH, Im JY, et al. PI3K/AKT/β-catenin signaling regulates vestigial-like 1 which predicts poor prognosis and enhances malignant phenotype in gastric cancer. Cancers (Basel), 2019, 11(12): 1923. doi: 10.3390/cancers11121923. |
59. | Fujitani K, Kurokawa Y, Takeno A, et al. Prospective multicenter interventional study of surgical resection for liver metastasis from gastric cancer: R0 resection rate, and operative morbidity and mortality. Ann Surg Oncol, 2022, 29(2): 924-932. |
60. | Conde Monroy D, Ibañez-Pinilla M, Sabogal JC, et al. Survival outcomes of hepatectomy in gastric cancer liver metastasis: a systematic review and meta-analysis. J Clin Med, 2023, 12(2): 704. doi: 10.3390/jcm12020704. |
61. | Torzilli G, Adam R, Viganò L, et al. Surgery of colorectal liver metastases: pushing the limits. Liver Cancer, 2016, 6(1): 80-89. |
62. | Liu Y, Li S, Wan X, et al. Efficacy and safety of thermal ablation in patients with liver metastases. Eur J Gastroenterol Hepatol, 2013, 25(4): 442-446. |
63. | Tang K, Zhang B, Dong L, et al. Radiofrequency ablation versus traditional liver resection and chemotherapy for liver metastases from gastric cancer. J Int Med Res, 2020, 48(7): 300060520940509. doi: 10.1177/0300060520940509. |
64. | Tang K, Liu Y, Dong L, et al. Influence of thermal ablation of hepatic metastases from gastric adenocarcinoma on long-term survival: systematic review and pooled analysis. Medicine (Baltimore), 2018, 97(49): e13525. doi: 10.1097/MD.0000000000013525. |
65. | Minami Y, Nishida N, Kudo M. Radiofrequency ablation of liver metastasis: potential impact on immune checkpoint inhibitor therapy. Eur Radiol, 2019, 29(9): 5045-5051. |
66. | Qi WX, Fu S, Zhang Q, et al. Charged particle therapy versus photon therapy for patients with hepatocellular carcinoma: a systematic review and meta-analysis. Radiother Oncol, 2015, 114(3): 289-295. |
67. | Yamaguchi H, Honda M, Hamada K, et al. The effectiveness of proton beam therapy for liver metastatic recurrence in gastric cancer patients. Jpn J Clin Oncol, 2020, 50(8): 903-908. |
68. | Fukumitsu N, Okumura T, Takizawa D, et al. Proton beam therapy for liver metastases from gastric cancer. J Radiat Res, 2017, 58(3): 357-362. |
69. | Jerraya H, Saidani A, Khalfallah M, et al. Management of liver metastases from gastric carcinoma: where is the evidence? Tunis Med, 2013, 91(1): 1-5. |
70. | Wang K, Zhang X, Wei J, et al. Hepatic arterial infusion oxaliplatin plus oral S-1 chemotherapy in gastric cancer with unresectable liver metastases: a case series and literature review. Cancer Manag Res, 2020, 12: 863-870. |
71. | Beeharry MK, Zhang TQ, Liu WT, et al. Optimization of perioperative approaches for advanced and late stages of gastric cancer: clinical proposal based on literature evidence, personal experience, and ongoing trials and research. World J Surg Oncol, 2020, 18(1): 51. doi: 10.1186/s12957-020-01819-6. |
72. | Hironaka S, Ueda S, Yasui H, et al. Randomized, open-label, phase Ⅲ study comparing irinotecan with paclitaxel in patients with advanced gastric cancer without severe peritoneal metastasis after failure of prior combination chemotherapy using fluoropyrimidine plus platinum: WJOG 4007 trial. J Clin Oncol, 2013, 31(35): 4438-4444. |
73. | Zhu XD, Huang MZ, Wang YS, et al. XELOX doublet regimen versus EOX triplet regimen as first-line treatment for advanced gastric cancer: an open-labeled, multicenter, randomized, prospective phase Ⅲ trial (EXELOX). Cancer Commun (Lond), 2022, 42(4): 314-326. |
74. | Van Cutsem E, Bang YJ, Feng-Yi F, et al. HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer, 2015, 18(3): 476-484. |
75. | Xu D, Zhang Z, Zhang S, et al. Efficacy of trastuzumab combined with SOX or IP chemotherapy regimen in the treatment of advanced gastric cancer. J BUON, 2021, 26(3): 932-939. |
76. | Sasaki A, Nakamura Y, Mishima S, et al. Predictive factors for hyperprogressive disease during nivolumab as anti-PD1 treatment in patients with advanced gastric cancer. Gastric Cancer, 2019, 22(4): 793-802. |
77. | Wang K, Wang H, Lv Y, et al. Camrelizumab combined with lenvatinib in the treatment of gastric cancer with liver metastasis: a case report. Ann Palliat Med, 2021, 10(1): 803-809. |
78. | Namikawa T, Marui A, Yokota K, et al. Successful conversion surgery for advanced gastric cancer with multiple liver metastases following ramucirumab plus paclitaxel combination treatment. In Vivo, 2021, 35(5): 2929-2935. |
79. | Gong J, Tan G, Sheng N, et al. Targeted treatment of liver metastasis from gastric cancer using specific binding peptide. Am J Transl Res, 2016, 8(5): 1945-1956. |
80. | Muro K, Chung HC, Shankaran V, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol, 2016, 17(6): 717-726. |
81. | Hsu LW, Huang KH, Chen MH, et al. Genetic alterations in gastric cancer patients according to sex. Aging (Albany NY), 2020, 13(1): 376-388. |
82. | Kang YK, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2017, 390(10111): 2461-2471. |
83. | Shitara K, Özgüroğlu M, Bang YJ, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet, 2018, 392(10142): 123-133. |
84. | Kato S, Goodman A, Walavalkar V, et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res, 2017, 23(15): 4242-4250. |
85. | Sun F, Yu X, Ju R, et al. Antitumor responses in gastric cancer by targeting B7H3 via chimeric antigen receptor T cells. Cancer Cell Int, 2022, 22(1): 50. doi: 10.1186/s12935-022-02471-8. |
86. | Qi C, Gong J, Li J, et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med, 2022, 28(6): 1189-1198. |
- 1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
- 2. Kodera Y, Ito S, Mochizuki Y, et al. The number of metastatic lymph nodes is a significant risk factor for bone metastasis and poor outcome after surgery for linitis plastica-type gastric carcinoma. World J Surg, 2008, 32(9): 2015-2020.
- 3. Petrelli F, Coinu A, Cabiddu M, et al. Hepatic resection for gastric cancer liver metastases: a systematic review and meta-analysis. J Surg Oncol, 2015, 111(8): 1021-1027.
- 4. Yoshikawa T, Sasako M. Gastrointestinal cancer: adjuvant chemotherapy after D2 gastrectomy for gastric cancer. Nat Rev Clin Oncol, 2012, 9(4): 192-194.
- 5. Jin X, Zhu Z, Shi Y. Metastasis mechanism and gene/protein expression in gastric cancer with distant organs metastasis. Bull Cancer, 2014, 101(1): E1-E12. doi: 10.1684/bdc.2013.1882.
- 6. Li PF, Chen SC, Xia T, et al. Non-coding RNAs and gastric cancer. World J Gastroenterol, 2014, 20(18): 5411-5419.
- 7. Hwang J, Min BH, Jang J, et al. MicroRNA expression profiles in gastric carcinogenesis. Sci Rep, 2018, 8(1): 14393. doi: 10.1038/s41598-018-32782-8.
- 8. Li X, Zhang Y, Shi Y, et al. MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer. J Cell Mol Med, 2011, 15(9): 1887-1895.
- 9. Gialeli C, Gungor B, Blom AM. Novel potential inhibitors of complement system and their roles in complement regulation and beyond. Mol Immunol, 2018, 102: 73-83.
- 10. Chen XL, Hong LL, Wang KL, et al. Deregulation of CSMD1 targeted by microRNA-10b drives gastric cancer progression through the NF-κB pathway. Int J Biol Sci, 2019, 15(10): 2075-2086.
- 11. Xie T, Wu D, Li S, et al. microRNA-582 potentiates liver and lung metastasis of gastric carcinoma cells through the FOXO3-Mediated PI3K/Akt/Snail pathway. Cancer Manag Res, 2020, 12: 5201-5212.
- 12. Zhang C, Han Y, Huang H, et al. High NR2F2 transcript level is associated with increased survival and its expression inhibits TGF-β-dependent epithelial-mesenchymal transition in breast cancer. Breast Cancer Res Treat, 2014, 147(2): 265-281.
- 13. Yao J, Deng B, Zheng L, et al. miR-27b is upregulated in cervical carcinogenesis and promotes cell growth and invasion by regulating CDH11 and epithelial-mesenchymal transition. Oncol Rep, 2016, 35(3): 1645-1651.
- 14. Feng Q, Wu X, Li F, et al. miR-27b inhibits gastric cancer metastasis by targeting NR2F2. Protein Cell, 2017, 8(2): 114-122.
- 15. Nishida N, Mimori K, Fabbri M, et al. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin Cancer Res, 2011, 17(9): 2725-2733.
- 16. Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet, 2010, 376(9742): 687-697.
- 17. Hashiguchi Y, Nishida N, Mimori K, et al. Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int J Oncol, 2012, 40(5): 1477-1482.
- 18. Wang Z, Yao L, Li Y, et al. miR-337-3p inhibits gastric tumor metastasis by targeting ARHGAP10. Mol Med Rep, 2020, 21(2): 705-719.
- 19. Tam C, Wong JH, Tsui SKW, et al. LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol, 2019, 103(12): 4649-4677.
- 20. Zhuo W, Liu Y, Li S, et al. Long noncoding RNA GMAN, up-regulated in gastric cancer tissues, is associated with metastasis in patients and promotes translation of Ephrin A1 by competitively binding GMAN-AS. Gastroenterology, 2019, 156(3): 676-691. e11. doi: 10.1053/j.gastro.2018.10.054.
- 21. Ba MC, Ba Z, Long H, et al. LncRNA AC0938181. Accelerates gastric cancer metastasis by epigenetically promoting PDK1 expression. Cell Death Dis, 2020, 11(1): 64.
- 22. Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol, 2015, 12(4): 381-388.
- 23. Chen B, Huang S. Circular RNA: an emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett, 2018, 418: 41-50.
- 24. Zhang J, Hou L, Liang R, et al. CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol Cancer, 2019, 18(1): 80. doi: 10.1186/s12943-019-1015-1.
- 25. Geng X, Wang J, Zhang C, et al. Circular RNA circCOL6A3_030 is involved in the metastasis of gastric cancer by encoding polypeptide. Bioengineered, 2021, 12(1): 8202-8216.
- 26. Lee MW, Kim GH, Jeon HK, et al. Clinical application of circulating tumor cells in gastric cancer. Gut Liver, 2019, 13(4): 394-401.
- 27. Huang X, Gao P, Sun J, et al. Clinicopathological and prognostic significance of circulating tumor cells in patients with gastric cancer: a meta-analysis. Int J Cancer, 2015, 136(1): 21-33.
- 28. Hüsemann Y, Geigl JB, Schubert F, et al. Systemic spread is an early step in breast cancer. Cancer Cell, 2008, 13(1): 58-68.
- 29. Yu M. Metastasis stemming from circulating tumor cell clusters. Trends Cell Biol, 2019, 29(4): 275-276.
- 30. Chen Y, Yuan J, Li Y, et al. Profiling heterogenous sizes of circulating tumor microemboli to track therapeutic resistance and prognosis in advanced gastric cancer. Hum Cell, 2021, 34(5): 1446-1454.
- 31. Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell, 2010, 39(1): 133-144.
- 32. Zhang H, Deng T, Liu R, et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun, 2017, 8: 15016. doi: 10.1038/ncomms15016.
- 33. Alderton GK. Metastasis. Exosomes drive premetastatic niche formation. Nat Rev Cancer, 2012, 12(7): 447. doi: 10.1038/nrc3304.
- 34. Qiu S, Xie L, Lu C, et al. Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis. J Exp Clin Cancer Res, 2022, 41(1): 296. doi: 10.1186/s13046-022-02499-8.
- 35. Kumata Y, Iinuma H, Suzuki Y, et al. Exosome-encapsulated microRNA-23b as a minimally invasive liquid biomarker for the prediction of recurrence and prognosis of gastric cancer patients in each tumor stage. Oncol Rep, 2018, 40(1): 319-330.
- 36. Zhang Y, Han T, Feng D, et al. Screening of non-invasive miRNA biomarker candidates for metastasis of gastric cancer by small RNA sequencing of plasma exosomes. Carcinogenesis, 2020, 41(5): 582-590.
- 37. Kwa MQ, Herum KM, Brakebusch C. Cancer-associated fibroblasts: how do they contribute to metastasis? Clin Exp Metastasis, 2019, 36(2): 71-86.
- 38. Curtis M, Kenny HA, Ashcroft B, et al. Fibroblasts mobilize tumor cell glycogen to promote proliferation and metastasis. Cell Metab, 2019, 29(1): 141-155. e9.
- 39. Luo Q, Wang CQ, Yang LY, et al. FOXQ1/NDRG1 axis exacerbates hepatocellular carcinoma initiation via enhancing crosstalk between fibroblasts and tumor cells. Cancer Lett, 2018, 417: 21-34.
- 40. Li Q, Zhu CC, Ni B, et al. Lysyl oxidase promotes liver metastasis of gastric cancer via facilitating the reciprocal interactions between tumor cells and cancer associated fibroblasts. EBioMedicine, 2019, 49: 157-171.
- 41. Zhao Z, Zhang Y, Guo E, et al. Periostin secreted from podoplanin-positive cancer-associated fibroblasts promotes metastasis of gastric cancer by regulating cancer stem cells via AKT and YAP signaling pathway. Mol Carcinog, 2023, 62(5): 685-699.
- 42. Tanaka H, Muguruma K, Toyokawa T, et al. Differential impact of the neutrophil-lymphocyte ratio on the survival of patients with stage Ⅳ gastric cancer. Dig Surg, 2014, 31(4-5): 327-333.
- 43. Zhang W, Gu J, Chen J, et al. Interaction with neutrophils promotes gastric cancer cell migration and invasion by inducing epithelial-mesenchymal transition. Oncol Rep, 2017, 38(5): 2959-2966.
- 44. Li S, Cong X, Gao H, et al. Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. J Exp Clin Cancer Res, 2019, 38(1): 6. doi: 10.1186/s13046-018-1003-0.
- 45. Wang TT, Zhao YL, Peng LS, et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut, 2017, 66(11): 1900-1911.
- 46. Zhang J, Jin HY, Wu Y, et al. Hypoxia-induced LncRNA PCGEM1 promotes invasion and metastasis of gastric cancer through regulating SNAI1. Clin Transl Oncol, 2019, 21(9): 1142-1151.
- 47. Koyasu S, Kobayashi M, Goto Y, et al. Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge. Cancer Sci, 2018, 109(3): 560-571.
- 48. Wan J, Chai H, Yu Z, et al. HIF-1α effects on angiogenic potential in human small cell lung carcinoma. J Exp Clin Cancer Res, 2011, 30(1): 77. doi: 10.1186/1756-9966-30-77.
- 49. Chen L, Shi Y, Yuan J, et al. HIF-1 alpha overexpression correlates with poor overall survival and disease-free survival in gastric cancer patients post-gastrectomy. PLoS One, 2014, 9(3): e90678. doi: 10.1371/journal.pone.0090678.
- 50. Katoh M. Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer. Cancer Biol Ther, 2007, 6(6): 832-839.
- 51. Yamamoto H, Kitadai Y, Yamamoto H, et al. Laminin gamma2 mediates Wnt5a-induced invasion of gastric cancer cells. Gastroenterology, 2009, 137(1): 242-252, 252. e1-e6. doi: 10.1053/j.gastro.2009.02.003.
- 52. Hanaki H, Yamamoto H, Sakane H, et al. An anti-Wnt5a antibody suppresses metastasis of gastric cancer cells in vivo by inhibiting receptor-mediated endocytosis. Mol Cancer Ther, 2012, 11(2): 298-307.
- 53. Fu Y, Chen Y, Huang J, et al. RYK, a receptor of noncanonical Wnt ligand Wnt5a, is positively correlated with gastric cancer tumorigenesis and potential of liver metastasis. Am J Physiol Gastrointest Liver Physiol, 2020, 318(2): G352-G360.
- 54. Fang WL, Huang KH, Lan YT, et al. Mutations in PI3K/AKT pathway genes and amplifications of PIK3CA are associated with patterns of recurrence in gastric cancers. Oncotarget, 2016, 7(5): 6201-6220.
- 55. Yokoyama H, Ikehara Y, Kodera Y, et al. Molecular basis for sensitivity and acquired resistance to gefitinib in HER2-overexpressing human gastric cancer cell lines derived from liver metastasis. Br J Cancer, 2006, 95(11): 1504-1513.
- 56. Hsieh AC, Moasser MM. Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br J Cancer, 2007, 97(4): 453-457.
- 57. Okines A, Cunningham D, Chau I. Targeting the human EGFR family in esophagogastric cancer. Nat Rev Clin Oncol, 2011, 8(8): 492-503.
- 58. Kim BK, Cheong JH, Im JY, et al. PI3K/AKT/β-catenin signaling regulates vestigial-like 1 which predicts poor prognosis and enhances malignant phenotype in gastric cancer. Cancers (Basel), 2019, 11(12): 1923. doi: 10.3390/cancers11121923.
- 59. Fujitani K, Kurokawa Y, Takeno A, et al. Prospective multicenter interventional study of surgical resection for liver metastasis from gastric cancer: R0 resection rate, and operative morbidity and mortality. Ann Surg Oncol, 2022, 29(2): 924-932.
- 60. Conde Monroy D, Ibañez-Pinilla M, Sabogal JC, et al. Survival outcomes of hepatectomy in gastric cancer liver metastasis: a systematic review and meta-analysis. J Clin Med, 2023, 12(2): 704. doi: 10.3390/jcm12020704.
- 61. Torzilli G, Adam R, Viganò L, et al. Surgery of colorectal liver metastases: pushing the limits. Liver Cancer, 2016, 6(1): 80-89.
- 62. Liu Y, Li S, Wan X, et al. Efficacy and safety of thermal ablation in patients with liver metastases. Eur J Gastroenterol Hepatol, 2013, 25(4): 442-446.
- 63. Tang K, Zhang B, Dong L, et al. Radiofrequency ablation versus traditional liver resection and chemotherapy for liver metastases from gastric cancer. J Int Med Res, 2020, 48(7): 300060520940509. doi: 10.1177/0300060520940509.
- 64. Tang K, Liu Y, Dong L, et al. Influence of thermal ablation of hepatic metastases from gastric adenocarcinoma on long-term survival: systematic review and pooled analysis. Medicine (Baltimore), 2018, 97(49): e13525. doi: 10.1097/MD.0000000000013525.
- 65. Minami Y, Nishida N, Kudo M. Radiofrequency ablation of liver metastasis: potential impact on immune checkpoint inhibitor therapy. Eur Radiol, 2019, 29(9): 5045-5051.
- 66. Qi WX, Fu S, Zhang Q, et al. Charged particle therapy versus photon therapy for patients with hepatocellular carcinoma: a systematic review and meta-analysis. Radiother Oncol, 2015, 114(3): 289-295.
- 67. Yamaguchi H, Honda M, Hamada K, et al. The effectiveness of proton beam therapy for liver metastatic recurrence in gastric cancer patients. Jpn J Clin Oncol, 2020, 50(8): 903-908.
- 68. Fukumitsu N, Okumura T, Takizawa D, et al. Proton beam therapy for liver metastases from gastric cancer. J Radiat Res, 2017, 58(3): 357-362.
- 69. Jerraya H, Saidani A, Khalfallah M, et al. Management of liver metastases from gastric carcinoma: where is the evidence? Tunis Med, 2013, 91(1): 1-5.
- 70. Wang K, Zhang X, Wei J, et al. Hepatic arterial infusion oxaliplatin plus oral S-1 chemotherapy in gastric cancer with unresectable liver metastases: a case series and literature review. Cancer Manag Res, 2020, 12: 863-870.
- 71. Beeharry MK, Zhang TQ, Liu WT, et al. Optimization of perioperative approaches for advanced and late stages of gastric cancer: clinical proposal based on literature evidence, personal experience, and ongoing trials and research. World J Surg Oncol, 2020, 18(1): 51. doi: 10.1186/s12957-020-01819-6.
- 72. Hironaka S, Ueda S, Yasui H, et al. Randomized, open-label, phase Ⅲ study comparing irinotecan with paclitaxel in patients with advanced gastric cancer without severe peritoneal metastasis after failure of prior combination chemotherapy using fluoropyrimidine plus platinum: WJOG 4007 trial. J Clin Oncol, 2013, 31(35): 4438-4444.
- 73. Zhu XD, Huang MZ, Wang YS, et al. XELOX doublet regimen versus EOX triplet regimen as first-line treatment for advanced gastric cancer: an open-labeled, multicenter, randomized, prospective phase Ⅲ trial (EXELOX). Cancer Commun (Lond), 2022, 42(4): 314-326.
- 74. Van Cutsem E, Bang YJ, Feng-Yi F, et al. HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer, 2015, 18(3): 476-484.
- 75. Xu D, Zhang Z, Zhang S, et al. Efficacy of trastuzumab combined with SOX or IP chemotherapy regimen in the treatment of advanced gastric cancer. J BUON, 2021, 26(3): 932-939.
- 76. Sasaki A, Nakamura Y, Mishima S, et al. Predictive factors for hyperprogressive disease during nivolumab as anti-PD1 treatment in patients with advanced gastric cancer. Gastric Cancer, 2019, 22(4): 793-802.
- 77. Wang K, Wang H, Lv Y, et al. Camrelizumab combined with lenvatinib in the treatment of gastric cancer with liver metastasis: a case report. Ann Palliat Med, 2021, 10(1): 803-809.
- 78. Namikawa T, Marui A, Yokota K, et al. Successful conversion surgery for advanced gastric cancer with multiple liver metastases following ramucirumab plus paclitaxel combination treatment. In Vivo, 2021, 35(5): 2929-2935.
- 79. Gong J, Tan G, Sheng N, et al. Targeted treatment of liver metastasis from gastric cancer using specific binding peptide. Am J Transl Res, 2016, 8(5): 1945-1956.
- 80. Muro K, Chung HC, Shankaran V, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol, 2016, 17(6): 717-726.
- 81. Hsu LW, Huang KH, Chen MH, et al. Genetic alterations in gastric cancer patients according to sex. Aging (Albany NY), 2020, 13(1): 376-388.
- 82. Kang YK, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2017, 390(10111): 2461-2471.
- 83. Shitara K, Özgüroğlu M, Bang YJ, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet, 2018, 392(10142): 123-133.
- 84. Kato S, Goodman A, Walavalkar V, et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res, 2017, 23(15): 4242-4250.
- 85. Sun F, Yu X, Ju R, et al. Antitumor responses in gastric cancer by targeting B7H3 via chimeric antigen receptor T cells. Cancer Cell Int, 2022, 22(1): 50. doi: 10.1186/s12935-022-02471-8.
- 86. Qi C, Gong J, Li J, et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med, 2022, 28(6): 1189-1198.