1. |
Li J, Li L, Dong Y, et al. Comprehensive analysis of cuproptosis genes and identification of cuproptosis subtypes in breast cancer. Comb Chem High Throughput Screen, 2023, 26(8): 1578-1593.
|
2. |
Kim KI, Jang SJ, Park JH, et al. Detection of increased 64Cu uptake by human copper transporter 1 gene overexpression using PET with 64CuCl2 in human breast cancer xenograft model. J Nucl Med, 2014, 55(10): 1692-1698.
|
3. |
Brady DC, Crowe MS, Turski ML, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature, 2014, 509(7501): 492-496.
|
4. |
Baker AM, Bird D, Lang G, et al. Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene, 2013, 32(14): 1863-1868.
|
5. |
Zhao Q, Qi T. The implications and prospect of cuproptosis-related genes and copper transporters in cancer progression. Front Oncol, 2023, 13: 1117164. doi: 10.3389/fonc.2023.1117164.
|
6. |
Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J, 1984, 219(1): 1-14.
|
7. |
Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586): 1254-1261.
|
8. |
Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res, 2022, 32(5): 417-418.
|
9. |
Lee S, Chung CY, Liu P, et al. Activity-based sensing with a metal-directed acyl imidazole strategy reveals cell type-dependent pools of labile brain copper. J Am Chem Soc, 2020, 142(35): 14993-15003.
|
10. |
Blockhuys S, Celauro E, Hildesjö C, et al. Defining the human copper proteome and analysis of its expression variation in cancers. Metallomics, 2017, 9(2): 112-123.
|
11. |
Ge EJ, Bush AI, Casini A, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer, 2022, 22(2): 102-113.
|
12. |
Ishida S, Andreux P, Poitry-Yamate C, et al. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci U S A, 2013, 110(48): 19507-19512.
|
13. |
和彦苓, 张丽萍, 耿虹, 等. 乳腺癌患者血中铜、锌、硒含量及铜锌比值分析. 包头医学院学报, 2003, 19(3): 179-180.
|
14. |
李莉, 鲁英, 杨晓燕, 等. 新疆乳腺癌患者血清中Mn、Cu、Se、Zn的病例对照研究. 新疆医科大学学报, 2015(1): 67-69.
|
15. |
Tsang T, Posimo JM, Gudiel AA, et al. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol, 2020, 22(4): 412-424.
|
16. |
Bengtsson Y, Demircan K, Vallon-Christersson J, et al. Serum copper, zinc and copper/zinc ratio in relation to survival after breast cancer diagnosis: a prospective multicenter cohort study. Redox Biol, 2023, 63: 102728. doi: 10.1016/j.redox.2023.102728.
|
17. |
Jouybari L, Kiani F, Islami F, et al. Copper concentrations in breast cancer: a systematic review and meta-analysis. Curr Med Chem, 2020, 27(37): 6373-6383.
|
18. |
Xie J, Yang Y, Gao Y, et al. Cuproptosis: mechanisms and links with cancers. Mol Cancer, 2023, 22(1): 46. doi: 10.1186/s12943-023-01732-y.
|
19. |
Jiang B, Zhu H, Feng W, et al. Database mining detected a cuproptosis-related prognostic signature and a related regulatory axis in breast cancer. Dis Markers, 2022, 2022: 9004830.
|
20. |
Kong FS, Ren CY, Jia R, et al. Systematic pan-cancer analysis identifies SLC31A1 as a biomarker in multiple tumor types. BMC Med Genomics, 2023, 16(1): 61. doi: 10.1186/s12920-023-01489-9.
|
21. |
Li X, Ma Z, Mei L. Cuproptosis-related gene SLC31A1 is a potential predictor for diagnosis, prognosis and therapeutic response of breast cancer. Am J Cancer Res. 2022, 12(8): 3561-3580.
|
22. |
刘以原. 非编码RNA介导铜死亡相关基因SLC31A1高表达与乳腺癌不良预后和肿瘤免疫浸润相关. 汕头大学, 2022.
|
23. |
Huang T, Liu Y, Li J, et al. Insights into prognosis and immune infiltration of cuproptosis-related genes in breast cancer. Front Immunol, 2022, 13: 1054305. doi: 10.3389/fimmu.2022.1054305.
|
24. |
Sha S, Si L, Wu X, et al. Prognostic analysis of cuproptosis-related gene in triple-negative breast cancer. Front Immunol, 2022, 13: 922780. doi: 10.3389/fimmu.2022.922780.
|
25. |
Cheng T, Wu Y, Liu Z, et al. CDKN2A-mediated molecular subtypes characterize the hallmarks of tumor microenvironment and guide precision medicine in triple-negative breast cancer. Front Immunol, 2022, 13: 970950. doi: 10.3389/fimmu.2022.970950.
|
26. |
余荣凤, 杨永秀. 铜诱导细胞死亡及其在妇科肿瘤中的作用研究进展. 山东医药, 2023, 63(4): 100-103.
|
27. |
Zhang C, Zeng Y, Guo X, et al. Pan-cancer analyses confirmed the cuproptosis-related gene FDX1 as an immunotherapy predictor and prognostic biomarker. Front Genet, 2022, 13: 923737. doi: 10.3389/fgene.2022.923737.
|
28. |
Liu Y, Wang J, Jiang M. Copper-related genes predict prognosis and characteristics of breast cancer. Front Immunol, 2023, 14: 1145080. doi: 10.3389/fimmu.2023.1145080.
|
29. |
Zhu B, Wang S, Wang R, et al. Identification of molecular subtypes and a six-gene risk model related to cuproptosis for triple negative breast cancer. Front Genet, 2022, 13: 1022236. doi: 10.3389/fgene.2022.1022236.
|
30. |
Cai Y, He Q, Liu W, et al. Comprehensive analysis of the potential cuproptosis-related biomarker LIAS that regulates prognosis and immunotherapy of pan-cancers. Front Oncol, 2022, 12: 952129. doi: 10.3389/fonc.2022.952129.
|
31. |
Zhang L, Zhang Y, Bao J, et al. Cuproptosis combined with lncRNAs predicts the prognosis and immune microenvironment of breast cancer. Comput Math Methods Med, 2022, 2022: 5422698.
|
32. |
Zhou Z, Deng J, Pan T, et al. Prognostic significance of cuproptosis-related gene signatures in breast cancer based on transcriptomic data analysis. Cancers (Basel), 2022, 14(23): 5771. doi: 10.3390/cancers14235771.
|
33. |
Li J, Wu F, Li C, et al. The cuproptosis-related signature predicts prognosis and indicates immune microenvironment in breast cancer. Front Genet, 2022, 13: 977322. doi: 10.3389/fgene.2022.977322.
|
34. |
Guo Q, Qiu P, Pan K, et al. Comprehensive analysis of cuproptosis-related long non-coding RNA signature and personalized therapeutic strategy of breast cancer patients. Front Oncol, 2022, 12: 1081089. doi: 10.3389/fonc.2022.1081089.
|
35. |
Song S, Zhang M, Xie P, et al. Comprehensive analysis of cuproptosis-related genes and tumor microenvironment infiltration characterization in breast cancer. Front Immunol, 2022, 13: 978909. doi: 10.3389/fimmu.2022.978909.
|
36. |
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490(7418): 61-70.
|
37. |
Szostakowska M, Trębińska-Stryjewska A, Grzybowska EA, et al. Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals. Breast Cancer Res Treat, 2019, 173(3): 489-497.
|
38. |
Zhang D, Lu W, Zhuo Z, et al. Comprehensive analysis of a cuproptosis-related ceRNA network implicates a potential endocrine therapy resistance mechanism in ER-positive breast cancer. BMC Med Genomics, 2023, 16(1): 96. doi: 10.1186/s12920-023-01511-0.
|
39. |
Li L, Li L, Sun Q. High expression of cuproptosis-related SLC31A1 gene in relation to unfavorable outcome and deregulated immune cell infiltration in breast cancer: an analysis based on public databases. BMC Bioinformatics, 2022, 23(1): 350. doi: 10.1186/s12859-022-04894-6.
|
40. |
Davis CI, Gu X, Kiefer RM, et al. Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation. Metallomics, 2020, 12(12): 1995-2008.
|
41. |
Chen D, Cui QC, Yang H, et al. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res, 2006, 66(21): 10425-10433.
|
42. |
O’Day SJ, Eggermont AM, Chiarion-Sileni V, et al. Final results of phase Ⅲ SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J Clin Oncol, 2013, 31(9): 1211-1218.
|
43. |
Denoyer D, Masaldan S, La Fontaine S, et al. Targeting copper in cancer therapy: 'Copper That Cancer'. Metallomics, 2015, 7(11): 1459-1476.
|
44. |
Ramchandani D, Berisa M, Tavarez DA, et al. Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis. Nat Commun, 2021, 12(1): 7311. doi: 10.1038/s41467-021-27559-z.
|
45. |
Li Y. Copper homeostasis: emerging target for cancer treatment. IUBMB Life, 2020, 72(9): 1900-1908.
|
46. |
Shi H, Suo Y, Zhang Z, et al. Copper(Ⅱ)-disulfiram loaded melanin-dots for cancer theranostics. Nanomedicine, 2021, 32: 102340. doi: 10.1016/j.nano.2020.102340.
|
47. |
Meng X, Shi Y, Chen Z, et al. Extending hypochlorite sensing from cells to elesclomol-treated tumors in vivo by using a near-infrared dual-phosphorescent nanoprobe. ACS Appl Mater Interfaces, 2018, 10(42): 35838-35846.
|
48. |
Cui L, Gouw AM, LaGory EL, et al. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat Biotechnol, 2021, 39(3): 357-367.
|
49. |
Jiao Y, Hannafon BN, Ding WQ. Disulfiram’s anticancer activity: evidence and mechanisms. Anticancer Agents Med Chem, 2016, 16(11): 1378-1384.
|
50. |
Wang Y, Li W, Patel SS, et al. Blocking the formation of radiation-induced breast cancer stem cells. Oncotarget, 2014, 5(11): 3743-3755.
|
51. |
Wu L, Meng F, Dong L, et al. Disulfiram and BKM120 in combination with chemotherapy impede tumor progression and delay tumor recurrence in tumor initiating cell-rich TNBC. Sci Rep, 2019, 9(1): 236. doi: 10.1038/s41598-018-35619-6.
|
52. |
Liu T, Zhou Z, Zhang M, et al. Cuproptosis-immunotherapy using PD-1 overexpressing T cell membrane-coated nanosheets efficiently treats tumor. J Control Release, 2023, 362: 502-512.
|
53. |
Rauf A, Abu-Izneid T, Khalil AA, et al. Berberine as a potential anticancer agent: a comprehensive review. Molecules, 2021, 26(23): 7368. doi: 10.3390/molecules26237368.
|
54. |
Lee SY, Seo JH, Kim S, et al. Cuproptosis-inducible chemotherapeutic/cascade catalytic reactor system for combating with breast cancer. Small, 2023, 19(35): e2301402. doi: 10.1002/smll.202301402.
|
55. |
Xiong C, Ling H, Hao Q, et al. Cuproptosis: p53-regulated metabolic cell death? Cell Death Differ, 2023, 30(4): 876-884.
|
56. |
Shen Y, Li D, Liang Q, et al. Cross-talk between cuproptosis and ferroptosis regulators defines the tumor microenvironment for the prediction of prognosis and therapies in lung adenocarcinoma. Front Immunol, 2023, 13: 1029092. doi: 10.3389/fimmu.2022.1029092.
|
57. |
陈佩贤, 叶国麟. 乳腺癌患者生存质量研究现状. 中国普外基础与临床杂志, 2021, 28(11): 1510-1515.
|