1. |
中国健康促进基金会血栓与血管专项基金专家委员会, 中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会. 医院内静脉血栓栓塞症防治与管理建议. 中华医学杂志, 2018, 98(18): 1383-1388.
|
2. |
吴洲鹏, 赵纪春, 马玉奎. 《欧洲血管外科学会(ESVS)2021年静脉血栓管理临床实践指南》解读. 中国普外基础与临床杂志, 2021, 28(2): 165-170.
|
3. |
中华医学会外科学分会血管外科学组. 深静脉血栓形成的诊断和治疗指南(第三版). 中国血管外科杂志(电子版), 2017, 9(4): 250-257.
|
4. |
Jacobs B, Obi A, Wakefield T. Diagnostic biomarkers in venous thromboembolic disease. J Vasc Surg Venous Lymphat Disord, 2016, 4(4): 508-517.
|
5. |
Kearon C, Akl EA, Comerota AJ, et al. Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 2012, 141(2 Suppl): e419S-e496S. doi: 10.1378/chest.11-2301.
|
6. |
Vandy FC, Stabler C, Eliassen AM, et al. Soluble P-selectin for the diagnosis of lower extremity deep venous thrombosis. J Vasc Surg Venous Lymphat Disord, 2013, 1(2): 117-1125.
|
7. |
Jafarzadeh-Esfehani R, Mostafa Parizadeh S, Sabeti Aghabozorgi A, et al. Circulating and tissue microRNAs as a potential diagnostic biomarker in patients with thrombotic events. J Cell Physiol, 2020, 235(10): 6393-6403.
|
8. |
Parizadeh SM, Ferns GA, Ghandehari M, et al. The diagnostic and prognostic value of circulating microRNAs in coronary artery disease: a novel approach to disease diagnosis of stable CAD and acute coronary syndrome. J Cell Physiol, 2018, 233(9): 6418-6424.
|
9. |
Eyileten C, Wicik Z, De Rosa S, et al. MicroRNAs as diagnostic and prognostic biomarkers in ischemic stroke—a comprehensive review and bioinformatic analysis. Cells, 2018, 7(12): 249. doi: 10.3390/cells7120249.
|
10. |
Zhu XM, Wu LJ, Xu J, et al. Let-7c microRNA expression and clinical significance in hepatocellular carcinoma. J Int Med Res, 2011, 39(6): 2323-2329.
|
11. |
Zhou W, Zou B, Liu L, et al. MicroRNA-98 acts as a tumor suppressor in hepatocellular carcinoma via targeting SALL4. Oncotarget, 2016, 7(45): 74059-74073.
|
12. |
Qin J, Liang H, Shi D, et al. A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis. J Thromb Thrombolysis, 2015, 39(2): 215-221.
|
13. |
Xie X, Liu C, Lin W, et al. Deep vein thrombosis is accurately predicted by comprehensive analysis of the levels of microRNA-96 and plasma D-dimer. Exp Ther Med, 2016, 12(3): 1896-1900.
|
14. |
Li NX, Sun JW, Yu LM. Evaluation of the circulating microRNA-495 and Stat3 as prognostic and predictive biomarkers for lower extremity deep venous thrombosis. J Cell Biochem, 2018, 119(7): 5262-5273.
|
15. |
Wang W, Zhu X, Du X, et al. MiR-150 promotes angiogensis and proliferation of endothelial progenitor cells in deep venous thrombosis by targeting SRCIN1. Microvasc Res, 2019, 123: 35-41.
|
16. |
Jiang Z, Ma J, Wang Q, et al. Combination of circulating miRNA-320a/b and D-dimer improves diagnostic accuracy in deep vein thrombosis patients. Med Sci Monit, 2018, 24: 2031-2037.
|
17. |
McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res, 2015, 107(3): 331-339.
|
18. |
Myers D Jr, Farris D, Hawley A, et al. Selectins influence thrombosis in a mouse model of experimental deep venous thrombosis. J Surg Res, 2002, 108(2): 212-221.
|
19. |
Jilma B, Kovar FM, Hron G, et al. Homozygosity in the single nucleotide polymorphism Ser128Arg in the E-selectin gene associated with recurrent venous thromboembolism. Arch Intern Med, 2006, 166(15): 1655-1659.
|
20. |
Myers DD Jr, Ning J, Lester P, et al. E-selectin inhibitor is superior to low-molecular-weight heparin for the treatment of experimental venous thrombosis. J Vasc Surg Venous Lymphat Disord, 2022, 10(1): 211-220.
|
21. |
Purdy M, Obi A, Myers D, et al. P- and E- selectin in venous thrombosis and non-venous pathologies. J Thromb Haemost, 2022, 20(5): 1056-1066.
|
22. |
Myers D Jr, Lester P, Adili R, et al. A new way to treat proximal deep venous thrombosis using E-selectin inhibition. J Vasc Surg Venous Lymphat Disord, 2020, 8(2): 268-278.
|
23. |
Girard TJ, Warren LA, Novotny WF, et al. Functional significance of the Kunitz-type inhibitory domains of lipoprotein-associated coagulation inhibitor. Nature, 1989, 338(6215): 518-520.
|
24. |
Broze GJ Jr, Warren LA, Novotny WF, et al. The lipoprotein-associated coagulation inhibitor that inhibits the factor Ⅶ-tissue factor complex also inhibits factor Ⅹ a: insight into its possible mechanism of action. Blood, 1988, 71(2): 335-343.
|
25. |
Cao X, Su Y, Zhang W, et al. The impact of anticoagulant activity of tissue factor pathway inhibitor measured by a novel functional assay for predicting deep venous thrombosis in trauma patients: a prospective nested case-control study. Clin Appl Thromb Hemost, 2021, 27: 10760296211063877. doi: 10.1177/10760296211063877.
|
26. |
Sidelmann JJ, Bladbjerg EM, Gram J, et al. Tissue factor pathway inhibitor relates to fibrin degradation in patients with acute deep venous thrombosis. Blood Coagul Fibrinolysis, 2008, 19(5): 405-409.
|
27. |
Dahm A, Van Hylckama Vlieg A, Bendz B, et al. Low levels of tissue factor pathway inhibitor (TFPI) increase the risk of venous thrombosis. Blood, 2003, 101(11): 4387-4392.
|
28. |
Reyes-García AML, Aroca A, Arroyo AB, et al. Neutrophil extracellular trap components increase the expression of coagulation factors. Biomed Rep, 2019, 10(3): 195-201.
|
29. |
Wang Y, Luo L, Braun OÖ, et al. Neutrophil extracellular trap-microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice. Sci Rep, 2018, 8(1): 4020. doi: 10.1038/s41598-018-22156-5.
|
30. |
Lim GB. Inflammation: DNases prevent clots formed by neutrophil extracellular traps. Nat Rev Cardiol, 2018, 15(2): 69. doi: 10.1038/nrcardio.2017.216.
|
31. |
Liu L, Zhang W, Su Y, et al. The impact of neutrophil extracellular traps on deep venous thrombosis in patients with traumatic fractures. Clin Chim Acta, 2021, 519: 231-238.
|
32. |
Laridan E, Denorme F, Desender L, et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol, 2017, 82(2): 223-232.
|
33. |
Peña-Martínez C, Durán-Laforet V, García-Culebras A, et al. Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (tissue-type plasminogen activator) Resistance. Stroke, 2019, 50(11): 3228-3237.
|
34. |
Liu X, Arfman T, Wichapong K, et al. PAD4 takes charge during neutrophil activation: impact of PAD4 mediated NET formation on immune-mediated disease. J Thromb Haemost, 2021, 19(7): 1607-1617.
|
35. |
Okeke EB, Louttit C, Fry C, et al. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock. Biomaterials, 2020, 238: 119836. doi: 10.1016/j.biomaterials.2020.119836.
|
36. |
Sae-Khow K, Charoensappakit A, Chiewchengchol D, et al. High-dose intravenous ascorbate in sepsis, a pro-oxidant enhanced microbicidal activity and the effect on neutrophil functions. Biomedicines, 2022, 11(1): 51. doi: 10.3390/biomedicines11010051.
|
37. |
Hou H, Ge Z, Ying P, et al. Biomarkers of deep venous thrombosis. J Thromb Thrombolysis, 2012, 34(3): 335-346.
|
38. |
陈哲, 林红, 王芳, 等. 血清纤维蛋白单体在下肢骨折术后深静脉血栓诊断中的应用效能. 山东医药, 2020, 60(6): 75-77.
|
39. |
Schutgens RE, Haas FJ, Agterof MJ, et al. The role of fibrin monomers in optimizing the diagnostic work-up of deep vein thrombosis. Thromb Haemost, 2007, 97(5): 807-813.
|
40. |
Iwamoto T, Hatayama Y, Namba H, et al. Fibrin monomer complex as a potential thrombosis marker related to venous thromboembolism risk in pregnant women. Ann Clin Biochem, 2023, 60(4): 279-285.
|
41. |
Anastasiou G, Gialeraki A, Merkouri E, et al. Thrombomodulin as a regulator of the anticoagulant pathway: implication in the development of thrombosis. Blood Coagul Fibrinolysis, 2012, 23(1): 1-10.
|
42. |
Lopez-Ramirez MA, Pham A, Girard R, et al. Cerebral cavernous malformations form an anticoagulant vascular domain in humans and mice. Blood, 2019, 133(3): 193-204.
|
43. |
Wolberg AS, Rosendaal FR, Weitz JI, et al. Venous thrombosis. Nat Rev Dis Primers, 2015, 1: 15006. doi: 10.1038/nrdp.2015.6.
|
44. |
Cheng X, Sun B, Liu S, et al. Identification of thrombomodulin as a dynamic monitoring biomarker for deep venous thrombosis evolution. Exp Ther Med, 2021, 21(2): 142. doi: 10.3892/etm.2020.9574.
|
45. |
孙宇婷, 高春艳. 微粒在血栓性疾病中的研究进展. 医学综述, 2021, 27(2): 275-279.
|
46. |
Timp JF, Braekkan SK, Versteeg HH, et al. Epidemiology of cancer-associated venous thrombosis. Blood, 2013, 122(10): 1712-1723.
|
47. |
Stark K, Schubert I, Joshi U, et al. Distinct pathogenesis of pancreatic cancer microvesicle-associated venous thrombosis identifies new antithrombotic targets in vivo. Arterioscler Thromb Vasc Biol, 2018, 38(4): 772-786.
|
48. |
Oto J, Navarro S, Larsen AC, et al. MicroRNAs and neutrophil activation markers predict venous thrombosis in pancreatic ductal adenocarcinoma and distal extrahepatic cholangiocarcinoma. Int J Mol Sci, 2020, 21(3): 840. doi: 10.3390/ijms21030840.
|
49. |
Anghel L, Sascău R, Radu R, et al. From classical laboratory parameters to novel biomarkers for the diagnosis of venous thrombosis. Int J Mol Sci, 2020, 21(6): 1920. doi: 10.3390/ijms21061920.
|
50. |
Lou Z, Zhu J, Li X, et al. LncRNA Sirt1-AS upregulates Sirt1 to attenuate aging related deep venous thrombosis. Aging (Albany NY), 2021, 13(5): 6918-6935.
|
51. |
Wang X, Memon AA, Hedelius A, et al. Association of circulating long noncoding 7S RNA with deep vein thrombosis. Semin Thromb Hemost, 2023, 49(7): 702-708.
|
52. |
Jensen SB, Hindberg K, Solomon T, et al. Discovery of novel plasma biomarkers for future incident venous thromboembolism by untargeted synchronous precursor selection mass spectrometry proteomics. J Thromb Haemost, 2018, 16(9): 1763-1774.
|