- Department of Hepatobiliary Surgery, The First People’s Hospital of Kunming/The Affiliated Ganmei Hospital of Kunming Medical University, Kunming 650100, P. R. China;
Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263. |
2. | 郝运, 李川, 文天夫, 等. 全球及中国的肝癌流行病学特征: 基于《2022全球癌症统计报告》解读. 中国普外基础与临床杂志, 2024, 31(7): 781-789. |
3. | 姚一菲, 孙可欣, 郑荣寿. 《2022全球癌症统计报告》解读: 中国与全球对比. 中国普外基础与临床杂志, 2024, 31(7): 769-780. |
4. | 中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2024年版). 临床肝胆病杂志, 2024, 40(5): 893-918. |
5. | Brown ZJ, Tsilimigras DI, Ruff SM, et al. Management of hepatocellular carcinoma: A review. JAMA Surg, 2023, 158(4): 410-420. |
6. | Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers, 2021, 7(1): 6. doi: 10.1038/s41572-020-00240-3. |
7. | Müller Bark J, Kulasinghe A, Chua B, et al. Circulating biomarkers in patients with glioblastoma. Br J Cancer, 2020, 122(3): 295-305. |
8. | Kustanovich A, Schwartz R, Peretz T, et al. Life and death of circulating cell-free DNA. Cancer Biol Ther, 2019, 20(8): 1057-1067. |
9. | Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol, 2022, 15(1): 131. doi: 10.1186/s13045-022-01351-y. |
10. | Elazezy M, Joosse SA. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol J, 2018, 16: 370-378. |
11. | Hu Z, Chen H, Long Y, et al. The main sources of circulating cell-free DNA: Apoptosis, necrosis and active secretion. Crit Rev Oncol Hematol, 2021, 157: 103166. doi: 10.1016/j.critrevonc.2020.103166. |
12. | Khier S, Gahan PB. Hepatic clearance of cell-free DNA: Possible impact on early metastasis diagnosis. Mol Diagn Ther, 2021, 25(6): 677-682. |
13. | Han DSC, Ni M, Chan RWY, et al. The biology of cell-free DNA fragmentation and the roles of DNASE1, DNASE1L3, and DFFB. Am J Hum Genet, 2020, 106(2): 202-214. |
14. | Han DSC, Lo YMD. The nexus of cfDNA and nuclease biology. Trends Genet, 2021, 37(8): 758-770. |
15. | de Miranda FS, Claudio LMAM, de Almeida DSM, et al. Cell-free nuclear and mitochondrial DNA as potential biomarkers for assessing sepsis severity. Biomedicines, 2024, 12(5): 933. doi: 10.3390/biomedicines12050933. |
16. | Berezina TA, Berezin AE. Cell-free DNA as a plausible biomarker of chronic kidney disease. Epigenomics, 2023, 15(17): 879-890. |
17. | Fridlich O, Peretz A, Fox-Fisher I, et al. Elevated cfDNA after exercise is derived primarily from mature polymorphonuclear neutrophils, with a minor contribution of cardiomyocytes. Cell Rep Med, 2023, 4(6): 101074. doi: 10.1016/j.xcrm.2023.101074. |
18. | Malhotra S, Miras MCM, Pappolla A, et al. Liquid biopsy in neurological diseases. Cells, 2023, 12(14): 1911. doi: 10.3390/cells12141911. |
19. | Salzano A, Israr MZ, Garcia DF, et al. Circulating cell-free DNA levels are associated with adverse outcomes in heart failure: testing liquid biopsy in heart failure. Eur J Prev Cardiol, 2021, 28(9): e28-e31. doi: 10.1177/2047487320912375. |
20. | Wang YH, Song Z, Hu XY, et al. Circulating tumor DNA analysis for tumor diagnosis. Talanta, 2021, 228: 122220. doi: 10.1016/j.talanta.2021.122220. |
21. | Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet, 2022, 38(7): 676-707. |
22. | Nguyen TH, Doan NNT, Tran TH, et al. Tissue of origin detection for cancer tumor using low-depth cfDNA samples through combination of tumor-specific methylation atlas and genome-wide methylation density in graph convolutional neural networks. J Transl Med, 2024, 22(1): 618. doi: 10.1186/s12967-024-05416-z. |
23. | Qi T, Pan M, Shi H, et al. Cell-free DNA fragmentomics: The novel promising biomarker. Int J Mol Sci, 2023, 24(2): 1503. doi: 10.3390/ijms24021503. |
24. | Oberhofer A, Bronkhorst AJ, Uhlig C, et al. Tracing the origin of cell-free DNA molecules through tissue-specific epigenetic signatures. Diagnostics (Basel), 2022, 12(8): 1834. doi: 10.3390/diagnostics12081834. |
25. | Huang Z, Hua D, Hu Y, et al. Quantitation of plasma circulating DNA using quantitative PCR for the detection of hepatocellular carcinoma. Pathol Oncol Res, 2012, 18(2): 271-276. |
26. | Piciocchi M, Cardin R, Vitale A, et al. Circulating free DNA in the progression of liver damage to hepatocellular carcinoma. Hepatol Int, 2013, 7(4): 1050-1057. |
27. | Wang J, Huang A, Wang YP, et al. Circulating tumor DNA correlates with microvascular invasion and predicts tumor recurrence of hepatocellular carcinoma. Ann Transl Med, 2020, 8(5): 237. doi: 10.21037/atm.2019.12.154. |
28. | Yang YJ, Chen H, Huang P, et al. Quantification of plasma hTERT DNA in hepatocellular carcinoma patients by quantitative fluorescent polymerase chain reaction. Clin Invest Med, 2011, 34(4): E238. doi: 10.25011/cim.v34i4.15366. |
29. | Sogbe M, Bilbao I, Marchese FP, et al. Prognostic value of ultra-low-pass whole-genome sequencing of circulating tumor DNA in hepatocellular carcinoma under systemic treatment. Clin Mol Hepatol, 2024, 30(2): 177-190. |
30. | Zhao Q, Xu Y, Yuan D, et al. Role of ssDNA as a noninvasive indicator for the diagnosis and prognosis of hepatocellular carcinoma: An exploratory study. Dis Markers, 2021, 2021: 9958909. doi: 10.1155/2021/9958909. |
31. | Bian J, Long J, Yang X, et al. Construction and validation of a prognostic signature using CNV-driven genes for hepatocellular carcinoma. Ann Transl Med, 2021, 9(9): 765. doi: 10.21037/atm-20-7101. |
32. | Liu F, Liao Z, Qin L, et al. Targeting VPS72 inhibits ACTL6A/MYC axis activity in HCC progression. Hepatology, 2023, 78(5): 1384-1401. |
33. | Dong X, Chen G, Huang X, et al. Copy number profiling of circulating free DNA predicts transarterial chemoembolization response in advanced hepatocellular carcinoma. Mol Oncol, 2022, 16(10): 1986-1999. |
34. | Molparia B, Nichani E, Torkamani A. Assessment of circulating copy number variant detection for cancer screening. PLoS One, 2017, 12(7): e0180647. doi: 10.1371/journal.pone.0180647. |
35. | Draškovič T, Zidar N, Hauptman N. Circulating tumor DNA methylation biomarkers for characterization and determination of the cancer origin in malignant liver tumors. Cancers (Basel), 2023, 15(3): 859. doi: 10.3390/cancers15030859. |
36. | Luo B, Ma F, Liu H, et al. Cell-free DNA methylation markers for differential diagnosis of hepatocellular carcinoma. BMC Med, 2022, 20(1): 8. doi: 10.1186/s12916-021-02201-3. |
37. | Wang P, Song Q, Ren J, et al. Simultaneous analysis of mutations and methylations in circulating cell-free DNA for hepatocellular carcinoma detection. Sci Transl Med, 2022, 14(672): eabp8704. doi: 10.1126/scitranslmed.abp8704. |
38. | Tseng CF, Chen LT, Wang HD, et al. Transcriptional suppression of Dicer by HOXB-AS3/EZH2 complex dictates sorafenib resistance and cancer stemness. Cancer Sci, 2022, 113(5): 1601-1612. |
39. | Lai Y, Han X, Xie B, et al. EZH2 suppresses ferroptosis in hepatocellular carcinoma and reduces sorafenib sensitivity through epigenetic regulation of TFR2. Cancer Sci, 2024, 115(7): 2220-2234. |
40. | Cui Y, Li H, Zhan H, et al. Identification of Potential Biomarkers for Liver Cancer Through Gene Mutation and Clinical Characteristics. Front Oncol, 2021, 11: 733478. doi: 10.3389/fonc.2021.733478. |
41. | Kusakabe Y, Chiba T, Oshima M, et al. EZH1/2 inhibition augments the anti-tumor effects of sorafenib in hepatocellular carcinoma. Sci Rep, 2021, 11(1): 21396. doi: 10.1038/s41598-021-00889-0. |
42. | Zhang L, Li HT, Shereda R, et al. DNMT and EZH2 inhibitors synergize to activate therapeutic targets in hepatocellular carcinoma. Cancer Lett, 2022, 548: 215899. doi: 10.1016/j.canlet.2022.215899. |
43. | Cowzer D, White JB, Chou JF, et al. Targeted molecular profiling of circulating cell-free DNA in patients with advanced hepatocellular carcinoma. JCO Precis Oncol, 2023, 7: e2300272. doi: 10.1200/PO.23.00272. |
44. | Zhao W, Qiu L, Liu H, et al. Circulating tumor DNA as a potential prognostic and predictive biomarker during interventional therapy of unresectable primary liver cancer. J Gastrointest Oncol, 2020, 11(5): 1065-1077. |
45. | Kaseb AO, Sánchez NS, Sen S, et al. Molecular profiling of hepatocellular carcinoma using circulating cell-free DNA. Clin Cancer Res, 2019, 25(20): 6107-6118. |
46. | Toh MR, Wong EYT, Wong SH, et al. Global Epidemiology and Genetics of Hepatocellular Carcinoma. Gastroenterology, 2023, 164(5): 766-782. |
47. | Wang S, Shi H, Liu T, et al. Mutation profile and its correlation with clinicopathology in Chinese hepatocellular carcinoma patients. Hepatobiliary Surg Nutr, 2021, 10(2): 172-179. |
48. | Hassin O, Oren M. Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discov, 2023, 22(2): 127-144. |
49. | Wang Z, Li Z, Ji H. Direct targeting of β-catenin in the Wnt signaling pathway: Current progress and perspectives. Med Res Rev, 2021, 41(4): 2109-2129. |
50. | Wang H, Guo M, Wei H, et al. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther, 2023, 8(1): 92. doi: 10.1038/s41392-023-01347-1. |
51. | Fu Y, Yang Z, Hu Z, et al. Preoperative serum ctDNA predicts early hepatocellular carcinoma recurrence and response to systemic therapies. Hepatol Int, 2022, 16(4): 868-878. |
52. | Matsumae T, Kodama T, Myojin Y, et al. Circulating cell-free DNA profiling predicts the therapeutic outcome in advanced hepatocellular carcinoma patients treated with combination immunotherapy. Cancers (Basel), 2022, 14(14): 3367. doi: 10.3390/cancers14143367. |
53. | Vendrell JA, Mau-Them FT, Béganton B, et al. Circulating cell free tumor DNA detection as a routine tool for lung cancer patient management. Int J Mol Sci, 2017, 18(2): 264. doi: 10.3390/ijms18020264. |
54. | Song P, Wu LR, Yan YH, et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat Biomed Eng, 2022, 6(3): 232-245. |
55. | 孙同正, 杨芳. 基于实时荧光定量聚合酶链反应技术预测龋病发生的研究进展. 口腔医学研究, 2019, 35(1): 13-15. |
56. | Rausch C, Rothenberg-Thurley M, Buerger SA, et al. Double drop-off droplet digital PCR: A novel, versatile tool for mutation screening and residual disease monitoring in acute myeloid leukemia using cellular or cell-free DNA. J Mol Diagn, 2021, 23(8): 975-985. |
57. | Palacín-Aliana I, García-Romero N, Asensi-Puig A, et al. Clinical utility of liquid biopsy-based actionable mutations detected via ddPCR. Biomedicines, 2021, 9(8): 906. doi: 10.3390/biomedicines9080906. |
58. | Kojabad AA, Farzanehpour M, Galeh HEG, et al. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol, 2021, 93(7): 4182-4197. |
59. | García-Foncillas J, Alba E, Aranda E, et al. Incorporating BEAMing technology as a liquid biopsy into clinical practice for the management of colorectal cancer patients: an expert taskforce review. Ann Oncol, 2017, 28(12): 2943-2949. |
60. | Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med, 2008, 14(9): 985-990. |
61. | Katsuya Y. Current and future trends in whole genome sequencing in cancer. Cancer Biol Med, 2024, 21(1): 16-20. |
62. | Brlek P, Bulić L, Bračić M, et al. Implementing whole genome sequencing (WGS) in clinical practice: Advantages, challenges, and future perspectives. Cells, 2024, 13(6): 504. doi: 10.3390/cells13060504. |
63. | Hansen MC, Haferlach T, Nyvold CG. A decade with whole exome sequencing in haematology. Br J Haematol, 2020, 188(3): 367-382. |
- 1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
- 2. 郝运, 李川, 文天夫, 等. 全球及中国的肝癌流行病学特征: 基于《2022全球癌症统计报告》解读. 中国普外基础与临床杂志, 2024, 31(7): 781-789.
- 3. 姚一菲, 孙可欣, 郑荣寿. 《2022全球癌症统计报告》解读: 中国与全球对比. 中国普外基础与临床杂志, 2024, 31(7): 769-780.
- 4. 中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2024年版). 临床肝胆病杂志, 2024, 40(5): 893-918.
- 5. Brown ZJ, Tsilimigras DI, Ruff SM, et al. Management of hepatocellular carcinoma: A review. JAMA Surg, 2023, 158(4): 410-420.
- 6. Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers, 2021, 7(1): 6. doi: 10.1038/s41572-020-00240-3.
- 7. Müller Bark J, Kulasinghe A, Chua B, et al. Circulating biomarkers in patients with glioblastoma. Br J Cancer, 2020, 122(3): 295-305.
- 8. Kustanovich A, Schwartz R, Peretz T, et al. Life and death of circulating cell-free DNA. Cancer Biol Ther, 2019, 20(8): 1057-1067.
- 9. Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol, 2022, 15(1): 131. doi: 10.1186/s13045-022-01351-y.
- 10. Elazezy M, Joosse SA. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol J, 2018, 16: 370-378.
- 11. Hu Z, Chen H, Long Y, et al. The main sources of circulating cell-free DNA: Apoptosis, necrosis and active secretion. Crit Rev Oncol Hematol, 2021, 157: 103166. doi: 10.1016/j.critrevonc.2020.103166.
- 12. Khier S, Gahan PB. Hepatic clearance of cell-free DNA: Possible impact on early metastasis diagnosis. Mol Diagn Ther, 2021, 25(6): 677-682.
- 13. Han DSC, Ni M, Chan RWY, et al. The biology of cell-free DNA fragmentation and the roles of DNASE1, DNASE1L3, and DFFB. Am J Hum Genet, 2020, 106(2): 202-214.
- 14. Han DSC, Lo YMD. The nexus of cfDNA and nuclease biology. Trends Genet, 2021, 37(8): 758-770.
- 15. de Miranda FS, Claudio LMAM, de Almeida DSM, et al. Cell-free nuclear and mitochondrial DNA as potential biomarkers for assessing sepsis severity. Biomedicines, 2024, 12(5): 933. doi: 10.3390/biomedicines12050933.
- 16. Berezina TA, Berezin AE. Cell-free DNA as a plausible biomarker of chronic kidney disease. Epigenomics, 2023, 15(17): 879-890.
- 17. Fridlich O, Peretz A, Fox-Fisher I, et al. Elevated cfDNA after exercise is derived primarily from mature polymorphonuclear neutrophils, with a minor contribution of cardiomyocytes. Cell Rep Med, 2023, 4(6): 101074. doi: 10.1016/j.xcrm.2023.101074.
- 18. Malhotra S, Miras MCM, Pappolla A, et al. Liquid biopsy in neurological diseases. Cells, 2023, 12(14): 1911. doi: 10.3390/cells12141911.
- 19. Salzano A, Israr MZ, Garcia DF, et al. Circulating cell-free DNA levels are associated with adverse outcomes in heart failure: testing liquid biopsy in heart failure. Eur J Prev Cardiol, 2021, 28(9): e28-e31. doi: 10.1177/2047487320912375.
- 20. Wang YH, Song Z, Hu XY, et al. Circulating tumor DNA analysis for tumor diagnosis. Talanta, 2021, 228: 122220. doi: 10.1016/j.talanta.2021.122220.
- 21. Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet, 2022, 38(7): 676-707.
- 22. Nguyen TH, Doan NNT, Tran TH, et al. Tissue of origin detection for cancer tumor using low-depth cfDNA samples through combination of tumor-specific methylation atlas and genome-wide methylation density in graph convolutional neural networks. J Transl Med, 2024, 22(1): 618. doi: 10.1186/s12967-024-05416-z.
- 23. Qi T, Pan M, Shi H, et al. Cell-free DNA fragmentomics: The novel promising biomarker. Int J Mol Sci, 2023, 24(2): 1503. doi: 10.3390/ijms24021503.
- 24. Oberhofer A, Bronkhorst AJ, Uhlig C, et al. Tracing the origin of cell-free DNA molecules through tissue-specific epigenetic signatures. Diagnostics (Basel), 2022, 12(8): 1834. doi: 10.3390/diagnostics12081834.
- 25. Huang Z, Hua D, Hu Y, et al. Quantitation of plasma circulating DNA using quantitative PCR for the detection of hepatocellular carcinoma. Pathol Oncol Res, 2012, 18(2): 271-276.
- 26. Piciocchi M, Cardin R, Vitale A, et al. Circulating free DNA in the progression of liver damage to hepatocellular carcinoma. Hepatol Int, 2013, 7(4): 1050-1057.
- 27. Wang J, Huang A, Wang YP, et al. Circulating tumor DNA correlates with microvascular invasion and predicts tumor recurrence of hepatocellular carcinoma. Ann Transl Med, 2020, 8(5): 237. doi: 10.21037/atm.2019.12.154.
- 28. Yang YJ, Chen H, Huang P, et al. Quantification of plasma hTERT DNA in hepatocellular carcinoma patients by quantitative fluorescent polymerase chain reaction. Clin Invest Med, 2011, 34(4): E238. doi: 10.25011/cim.v34i4.15366.
- 29. Sogbe M, Bilbao I, Marchese FP, et al. Prognostic value of ultra-low-pass whole-genome sequencing of circulating tumor DNA in hepatocellular carcinoma under systemic treatment. Clin Mol Hepatol, 2024, 30(2): 177-190.
- 30. Zhao Q, Xu Y, Yuan D, et al. Role of ssDNA as a noninvasive indicator for the diagnosis and prognosis of hepatocellular carcinoma: An exploratory study. Dis Markers, 2021, 2021: 9958909. doi: 10.1155/2021/9958909.
- 31. Bian J, Long J, Yang X, et al. Construction and validation of a prognostic signature using CNV-driven genes for hepatocellular carcinoma. Ann Transl Med, 2021, 9(9): 765. doi: 10.21037/atm-20-7101.
- 32. Liu F, Liao Z, Qin L, et al. Targeting VPS72 inhibits ACTL6A/MYC axis activity in HCC progression. Hepatology, 2023, 78(5): 1384-1401.
- 33. Dong X, Chen G, Huang X, et al. Copy number profiling of circulating free DNA predicts transarterial chemoembolization response in advanced hepatocellular carcinoma. Mol Oncol, 2022, 16(10): 1986-1999.
- 34. Molparia B, Nichani E, Torkamani A. Assessment of circulating copy number variant detection for cancer screening. PLoS One, 2017, 12(7): e0180647. doi: 10.1371/journal.pone.0180647.
- 35. Draškovič T, Zidar N, Hauptman N. Circulating tumor DNA methylation biomarkers for characterization and determination of the cancer origin in malignant liver tumors. Cancers (Basel), 2023, 15(3): 859. doi: 10.3390/cancers15030859.
- 36. Luo B, Ma F, Liu H, et al. Cell-free DNA methylation markers for differential diagnosis of hepatocellular carcinoma. BMC Med, 2022, 20(1): 8. doi: 10.1186/s12916-021-02201-3.
- 37. Wang P, Song Q, Ren J, et al. Simultaneous analysis of mutations and methylations in circulating cell-free DNA for hepatocellular carcinoma detection. Sci Transl Med, 2022, 14(672): eabp8704. doi: 10.1126/scitranslmed.abp8704.
- 38. Tseng CF, Chen LT, Wang HD, et al. Transcriptional suppression of Dicer by HOXB-AS3/EZH2 complex dictates sorafenib resistance and cancer stemness. Cancer Sci, 2022, 113(5): 1601-1612.
- 39. Lai Y, Han X, Xie B, et al. EZH2 suppresses ferroptosis in hepatocellular carcinoma and reduces sorafenib sensitivity through epigenetic regulation of TFR2. Cancer Sci, 2024, 115(7): 2220-2234.
- 40. Cui Y, Li H, Zhan H, et al. Identification of Potential Biomarkers for Liver Cancer Through Gene Mutation and Clinical Characteristics. Front Oncol, 2021, 11: 733478. doi: 10.3389/fonc.2021.733478.
- 41. Kusakabe Y, Chiba T, Oshima M, et al. EZH1/2 inhibition augments the anti-tumor effects of sorafenib in hepatocellular carcinoma. Sci Rep, 2021, 11(1): 21396. doi: 10.1038/s41598-021-00889-0.
- 42. Zhang L, Li HT, Shereda R, et al. DNMT and EZH2 inhibitors synergize to activate therapeutic targets in hepatocellular carcinoma. Cancer Lett, 2022, 548: 215899. doi: 10.1016/j.canlet.2022.215899.
- 43. Cowzer D, White JB, Chou JF, et al. Targeted molecular profiling of circulating cell-free DNA in patients with advanced hepatocellular carcinoma. JCO Precis Oncol, 2023, 7: e2300272. doi: 10.1200/PO.23.00272.
- 44. Zhao W, Qiu L, Liu H, et al. Circulating tumor DNA as a potential prognostic and predictive biomarker during interventional therapy of unresectable primary liver cancer. J Gastrointest Oncol, 2020, 11(5): 1065-1077.
- 45. Kaseb AO, Sánchez NS, Sen S, et al. Molecular profiling of hepatocellular carcinoma using circulating cell-free DNA. Clin Cancer Res, 2019, 25(20): 6107-6118.
- 46. Toh MR, Wong EYT, Wong SH, et al. Global Epidemiology and Genetics of Hepatocellular Carcinoma. Gastroenterology, 2023, 164(5): 766-782.
- 47. Wang S, Shi H, Liu T, et al. Mutation profile and its correlation with clinicopathology in Chinese hepatocellular carcinoma patients. Hepatobiliary Surg Nutr, 2021, 10(2): 172-179.
- 48. Hassin O, Oren M. Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discov, 2023, 22(2): 127-144.
- 49. Wang Z, Li Z, Ji H. Direct targeting of β-catenin in the Wnt signaling pathway: Current progress and perspectives. Med Res Rev, 2021, 41(4): 2109-2129.
- 50. Wang H, Guo M, Wei H, et al. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther, 2023, 8(1): 92. doi: 10.1038/s41392-023-01347-1.
- 51. Fu Y, Yang Z, Hu Z, et al. Preoperative serum ctDNA predicts early hepatocellular carcinoma recurrence and response to systemic therapies. Hepatol Int, 2022, 16(4): 868-878.
- 52. Matsumae T, Kodama T, Myojin Y, et al. Circulating cell-free DNA profiling predicts the therapeutic outcome in advanced hepatocellular carcinoma patients treated with combination immunotherapy. Cancers (Basel), 2022, 14(14): 3367. doi: 10.3390/cancers14143367.
- 53. Vendrell JA, Mau-Them FT, Béganton B, et al. Circulating cell free tumor DNA detection as a routine tool for lung cancer patient management. Int J Mol Sci, 2017, 18(2): 264. doi: 10.3390/ijms18020264.
- 54. Song P, Wu LR, Yan YH, et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat Biomed Eng, 2022, 6(3): 232-245.
- 55. 孙同正, 杨芳. 基于实时荧光定量聚合酶链反应技术预测龋病发生的研究进展. 口腔医学研究, 2019, 35(1): 13-15.
- 56. Rausch C, Rothenberg-Thurley M, Buerger SA, et al. Double drop-off droplet digital PCR: A novel, versatile tool for mutation screening and residual disease monitoring in acute myeloid leukemia using cellular or cell-free DNA. J Mol Diagn, 2021, 23(8): 975-985.
- 57. Palacín-Aliana I, García-Romero N, Asensi-Puig A, et al. Clinical utility of liquid biopsy-based actionable mutations detected via ddPCR. Biomedicines, 2021, 9(8): 906. doi: 10.3390/biomedicines9080906.
- 58. Kojabad AA, Farzanehpour M, Galeh HEG, et al. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol, 2021, 93(7): 4182-4197.
- 59. García-Foncillas J, Alba E, Aranda E, et al. Incorporating BEAMing technology as a liquid biopsy into clinical practice for the management of colorectal cancer patients: an expert taskforce review. Ann Oncol, 2017, 28(12): 2943-2949.
- 60. Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med, 2008, 14(9): 985-990.
- 61. Katsuya Y. Current and future trends in whole genome sequencing in cancer. Cancer Biol Med, 2024, 21(1): 16-20.
- 62. Brlek P, Bulić L, Bračić M, et al. Implementing whole genome sequencing (WGS) in clinical practice: Advantages, challenges, and future perspectives. Cells, 2024, 13(6): 504. doi: 10.3390/cells13060504.
- 63. Hansen MC, Haferlach T, Nyvold CG. A decade with whole exome sequencing in haematology. Br J Haematol, 2020, 188(3): 367-382.