- 1. Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining 810001, P. R. China;
- 2. Laboratory of Stem Cell and Regenerative Medicine, Affiliated Hospital of Qinghai University, Xining 810001, P. R. China;
- 3. Qinghai Research Key Laboratory for Echinococcosis, Xining 810001, P. R. China;
We comprehensively outlined the application of imaging, immunology, and molecular biology techniques in the detection of hepatic echinococcosis (HE). Imaging techniques, represented by ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography, not only provided some critical information about the morphology, location, and characteristics of HE lesions, but also could be combined with artificial intelligence technologies to enhance the diagnostic capabilities and expand the application scenarios. These techniques were essential tools for the diagnosis, screening, and prevention of HE. Immunological techniques, such as the indirect hemagglutination assay, enzyme-linked immunosorbent assay, immunoblotting, and chemiluminescence immunoassay, aided in diagnosis and differential diagnosis by detecting the specific antibodies. Molecular biology techniques, such as polymerase chain reaction and high-throughput sequencing, provided a strong support for the diagnosis and pathogen identification of HE due to their high sensitivity and specificity. Based on these three major technologies, more sensitive, specific, convenient, and cost-effective detection techniques had emerged, offering more options for the detection and control of HE. Additionally, constructing comprehensive diagnostic models by combining the advantages of different detection technologies will aid to improve the diagnostic efficiency of HE.
Citation: HOU Shengxiang, HOU Zonghao, DENG Manjun, WANG Haijiu, FAN Haining. Hepatic echinococcosis: Novel detection methods. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2024, 31(10): 1160-1169. doi: 10.7507/1007-9424.202408121 Copy
1. | He W, Wang LY, Yu WJ, et al. Prevalence and spatial distribution patterns of human echinococcosis at the township level in Sichuan Province, China. Infect Dis Poverty, 2021, 10(1): 82. doi: 10.1186/s40249-021-00862-z. |
2. | Piarroux M, Piarroux R, Giorgi R, et al. Clinical features and evolution of alveolar echinococcosis in France from 1982 to 2007: results of a survey in 387 patients. J Hepatol, 2011, 55(5): 1025-1033. |
3. | Gharbi HA, Hassine W, Brauner MW, et al. Ultrasound examination of the hydatic liver. Radiology, 1981, 139(2): 459-463. |
4. | Kern P, Wen H, Sato N, et al. WHO classification of alveolar echinococcosis: principles and application. Parasitol Int, 2006, 55 Suppl: S283-S287. doi: 10.1016/j.parint.2005.11.041. |
5. | Stepanova YA, Goncharov AB, Zhao AV. Ultrasonic diagnostics at the stages of liver echinococcois treatment. J Experiment Clin Surg, 2022, 15(3): 244-253. |
6. | Beissert M, Delorme S, Mutze S, et al. Comparison of B-mode and conventional colour/power Doppler ultrasound, contrast-enhanced Doppler ultrasound and spiral CT in the diagnosis of focal lesions of the liver: Results of a multicentre study. Ultraschall Med, 2002, 23(4): 245-250. |
7. | Kim TH, Yoon JH, Lee JM. Emerging role of hepatobiliary magnetic resonance contrast media and contrast-enhanced ultrasound for noninvasive diagnosis of hepatocellular carcinoma: emphasis on recent updates in major guidelines. Korean J Radiol, 2019, 20(6): 863-879. |
8. | 王晶晶. 超声造影在肝泡型包虫病微波消融治疗效果评价中的研究. 西宁: 青海大学, 2021. |
9. | Tao S, Qin Z, Hao W, et al. Usefulness of gray-scale contrast-enhanced ultrasonography (SonoVue®) in diagnosing hepatic alveolar echinococcosis. Ultrasound Med Biol, 2011, 37(7): 1024-1028. |
10. | Cai D, Li Y, Jiang Y, et al. The role of contrast-enhanced ultrasound in the diagnosis of hepatic alveolar echinococcosis. Medicine (Baltimore), 2019, 98(5): e14325. doi: 10.1097/MD.0000000000014325. |
11. | 才让卓玛, 南嘉格列, 李晓君, 等. 常规彩超与超声造影诊断肝泡型包虫病效能比较. 实用肝脏病杂志, 2018, 21(2): 305-306. |
12. | 张旭辉, 索朗拉姆, 邱甲军, 等. 超声影像组学在肝包虫病分型中的应用研究. 临床超声医学杂志, 2024, 26(5): 353-359. |
13. | Findeisen H, Westhoff C, Trenker C, et al. Pulmonary cystic echinococcosis in contrast-enhanced ultrasound—a case report. J Ultrason, 2023, 23(92): 39-42. |
14. | Yangdan CR, Wang C, Zhang LQ, et al. Recent advances in ultrasound in the diagnosis and evaluation of the activity of hepatic alveolar echinococcosis. Parasitol Res, 2021, 120(9): 3077-3082. |
15. | Torgerson PR, Keller K, Magnotta M, et al. The global burden of alveolar echinococcosis. PLoS Negl Trop Dis, 2010, 4(6): e722. doi: 10.1371/journal.pntd.0000722. |
16. | Liu L, Guo B, Li W, et al. Geographic distribution of echinococcosis in Tibetan region of Sichuan Province, China. Infect Dis Poverty, 2018, 7(1): 104. doi: 10.1186/s40249-018-0486-4. |
17. | Wang Q, Huang Y, Huang L, et al. Review of risk factors for human echinococcosis prevalence on the Qinghai-Tibet Plateau, China: a prospective for control options. Infect Dis Poverty, 2014, 3(1): 3. doi: 10.1186/2049-9957-3-3. |
18. | Li T, Chen X, Zhen R, et al. Widespread co-endemicity of human cystic and alveolar echinococcosis on the eastern Tibetan Plateau, northwest Sichuan/southeast Qinghai, China. Acta Trop, 2010, 113(3): 248-256. |
19. | Huang D, Li R, Qiu J, et al. Geographical environment factors and risk mapping of human cystic echinococcosis in Western China. Int J Environ Res Public Health, 2018, 15(8): 1729. doi: 10.3390/ijerph15081729. |
20. | Yang YF, Yangdan CR, Jiang TA, et al. Ultrasound identification of hepatic echinococcosis using a deep convolutional neural network model in China: a retrospective, large-scale, multicentre, diagnostic accuracy study. Lancet Digit Health, 2023, 5(8): e503-e514. doi: 10.1016/S2589-7500(23)00091-2. |
21. | Cheng J, Wang H, Li R, et al. A two-stage multiresolution neural network for automatic diagnosis of hepatic echinococcosis from ultrasound images: A multicenter study. Med Phys, 2022, 49(5): 3199-3212. |
22. | 苟代文. CT平扫结合动态增强扫描在诊断肝泡型包虫病中的价值研究. 中国CT和MRI杂志, 2017, 15(10): 95-98. |
23. | Sade R, Kantarci M, Genc B, et al. Computed tomography perfusion imaging for the diagnosis of hepatic alveolar echinococcosis. Eurasian J Med, 2018, 50(1): 1-5. |
24. | Wang Z, Bian H, Li J, et al. Detection and subtyping of hepatic echinococcosis from plain CT images with deep learning: a retrospective, multicentre study. Lancet Digit Health, 2023, 5(11): e754-e762. doi: 10.1016/S2589-7500(23)00136-X. |
25. | Layer YC, Kravchenko D, Dell T, et al. CT technology: photon-counting detector computed tomography. Radiologie (Heidelb), 2023, 63(7): 497-506. |
26. | Kantarcı M, Aydın S, Kahraman A, et al. Virtual non-enhanced dual-energy computed tomography reconstruction: a candidate to replace true non-enhanced computed tomography scans in the setting of suspected liver alveolar echinococcosis. Diagn Interv Radiol, 2023, 29(6): 736-740. |
27. | Kodama Y, Fujita N, Shimizu T, et al. Alveolar echinococcosis: MR findings in the liver. Radiology, 2003, 228(1): 172-177. |
28. | 韩军伟. 肝泡型包虫病超声造影与MRI分型显示生物活性的一致性分析. 西宁: 青海大学, 2021. |
29. | Ren B, Wang J, Miao Z, et al. Hepatic alveolar echinococcosis: predictive biological activity based on radiomics of MRI. Biomed Res Int, 2021, 2021: 6681092. doi: 10.1155/2021/6681092. |
30. | Li J, Dong J, Yang L, et al. Comparison of 18F-fluorodeoxyglucose positron emission tomography and contrast-enhanced ultrasound for evaluation of hepatic alveolar echinococcosis activity. Ultrasound Med Biol, 2018, 44(11): 2199-2208. |
31. | 王志鑫, 刘云飞, 王灏, 等. 肝泡型包虫病的诊治进展. 器官移植, 2024, 15(2): 171-177. |
32. | Liu W, Delabrousse É, Blagosklonov O, et al. Innovation in hepatic alveolar echinococcosis imaging: best use of old tools, and necessary evaluation of new ones. Parasite, 2014, 21: 74. doi: 10.1051/parasite/2014072. |
33. | Husmann L, Gruenig H, Reiner CS, et al. Prediction of benzimidazole therapy duration with PET/CT in inoperable patients with alveolar echinococcosis. Sci Rep, 2022, 12(1): 11392. doi: 10.1038/s41598-022-15641-5. |
34. | Garabedian GA, Matossian RM, Djanian AY. An indirect hemagglutination test for hydatid disease. J Immunol, 1957, 78(4): 269-272. |
35. | Zait H, Hamrioui B. Human cystic echinococcosis: Serological diagnosis by indirect hemagglutination test, enzyme-linked immunosorbent assay, immunoelectrophoresis, and immunoblotting in surgically confirmed patients versus cases diagnosed by imaging techniques. Med Mal Infect, 2020, 50(8): 676-683. |
36. | Erganis S, Sarzhanov F, Al FD, et al. Comparison of methods in the serologic diagnosis of cystic echinococcosis. Acta Parasitol, 2024, 69(2): 1122-1131. |
37. | Aksoy U, Inci A. Application of in-house enzyme immunoassay and indirect hemagglutination methods for the serologic diagnosis of cystic echinococcosis. Mikrobiyol Bul, 2004, 38(3): 245-251. |
38. | Akil M, Ozkeklikci A, Ozturk EA, et al. Evaluation of usefulness of three serological tests using native crude antigen in diagnosis of hepatic cystic echinococcosis patients. Open J Med Microbiol, 2021, 11(2): 69-79. |
39. | Sari C, Ertuğ S, Karadam SY, et al. The comparative evaluation of Enzyme Linked Immunosorbent Assay (ELISA), Indirect Hemagglutination Test (IHA) and Indirect Fluorescent Antibody Test (IFAT) in the diagnosis of cystic echinococcosis. Turkiye Parazitol Derg, 2009, 33(1): 73-76. |
40. | Vola A, Manciulli T, De Silvestri A, et al. Diagnostic performances of commercial ELISA, indirect hemagglutination, and Western blot in differentiation of hepatic echinococcal and non-echinococcal lesions: a retrospective analysis of data from a single referral centre. Am J Trop Med Hyg, 2019, 101(6): 1345-1349. |
41. | Hadipour M, Fasihi Harandi M, Mirhendi H, et al. Diagnosis of echinococcosis by detecting circulating cell-free DNA and miRNA. Expert Rev Mol Diagn, 2023, 23(2): 133-142. |
42. | Ji J, Li B, Li J, et al. Comprehensive characterization of plasma cell-free Echinococcus spp. DNA in echinococcosis patients using ultra-high-throughput sequencing. PLoS Negl Trop Dis, 2020, 14(4): e0008148. doi: 10.1371/journal.pntd.0008148. |
43. | Zhang RJ, Li JZ, Pang HS, et al. Advances in the study of molecular identification technology of Echinococcus species. Trop Biomed, 2022, 39(3): 434-443. |
44. | Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: Advances in the 21st century. Clin Microbiol Rev, 2019, 32(2): e00075-18. doi: 10.1128/CMR.00075-18. |
45. | Yücesan B, Babür C, Kılıç S, et al. Evaluation of echinococcosis pre-diagnosis patients admitted to the National Parasitology Reference Laboratory of Turkey from 2014–2019. Iran J Parasitol, 2022, 17(2): 250-258. |
46. | Alhajj M, Zubair M, Farhana A. Enzyme linked immunosorbent assay. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2024. |
47. | Tabatabaei MS, Ahmed M. Enzyme-Linked Immunosorbent Assay (ELISA). Methods Mol Biol,2022, 2508: 115-134. |
48. | Peruzzu A, Mastrandrea S, Fancellu A, et al. Comparison and evaluation of analytic and diagnostic performances of four commercial kits for the detection of antibodies against Echinococcus granulosus and multilocularis in human sera. Comp Immunol Microbiol Infect Dis, 2022, 86: 101816. doi: 10.1016/j.cimid.2022.101816. |
49. | Carmena D, Benito A, Eraso E. Antigens for the immunodiagnosis of Echinococcus granulosus infection: An update. Acta Trop, 2006, 98(1): 74-86. |
50. | Gottstein B, Eckert J, Fey H. Serological differentiation between Echinococcus granulosus and E.multilocularis infections in man. Z Parasitenkd, 1983, 69(3): 347-356. |
51. | Gottstein B, Jacquier P, Bresson-Hadni S, et al. Improved primary immunodiagnosis of alveolar echinococcosis in humans by an enzyme-linked immunosorbent assay using the Em2plus antigen. J Clin Microbiol, 1993, 31(2): 373-376. |
52. | Demirkazık M, Koltas İS, İnceboz T, et al. Use of the ELISA (Em2-Em18) and Western Blotting methods on diagnosis of alveolar echinococcosis. Turkiye Parazitol Derg, 2019, 43(Suppl 1): 13-17. |
53. | Pektaş B, Altintaş N, Akpolat N, et al. Evaluation of the diagnostic value of the ELISA tests developed by using EgHF, Em2 and EmII/3-10 antigens in the serological diagnosis of alveolar echinococcosis. Mikrobiyol Bul, 2014, 48(3): 461-468. |
54. | Xiao N, Mamuti W, Yamasaki H, et al. Evaluation of use of recombinant Em18 and affinity-purified Em18 for serological differentiation of alveolar echinococcosis from cystic echinococcosis and other parasitic infections. J Clin Microbiol, 2003, 41(7): 3351-3353. |
55. | Ito A, Xiao N, Liance M, et al. Evaluation of an enzyme-linked immunosorbent assay (ELISA) with affinity-purified Em18 and an ELISA with recombinant Em18 for differential diagnosis of alveolar echinococcosis: results of a blind test. J Clin Microbiol, 2002, 40(11): 4161-4165. |
56. | Jiang L, Wen H, Ito A. Immunodiagnostic differentiation of alveolar and cystic echinococcosis using ELISA test with 18-kDa antigen extracted from Echinococcus protoscoleces. Trans R Soc Trop Med Hyg, 2001, 95(3): 285-288. |
57. | Ito A, Ma L, Schantz PM, et al. Differential serodiagnosis for cystic and alveolar echinococcosis using fractions of Echinococcus granulosus cyst fluid (antigen B) and Emultilocularis protoscolex (EM18). Am J Trop Med Hyg, 1999, 60(2): 188-192. |
58. | Khan S, Cable J, Younus M, et al. IEg67 kDa bovine hydatid cyst antigen: a candidate for developing sero-diagnostic assays for cystic echinococcosis, a disease of one health importance. Animals (Basel), 2023, 13(5): 866. doi: 10.3390/ani13050866. |
59. | Toaleb NI, Aboelsoued D, Abdel Megeed KN, et al. A novel designed sandwich ELISA for the detection of Echinococcus granulosus antigen in camels for diagnosis of cystic echinococcosis. Trop Med Infect Dis, 2023, 8(8): 400. doi: 10.3390/tropicalmed8080400. |
60. | Kronenberg PA, Reinehr M, Eichenberger RM, et al. Monoclonal antibody-based localization of major diagnostic antigens in metacestode tissue, excretory/secretory products, and extracellular vesicles of Echinococcus species. Front Cell Infect Microbiol, 2023, 13: 1162530. doi: 10.3389/fcimb.2023.1162530. |
61. | Sadjjadi SF, Mohammadzadeh T, Hafezi F, et al. Evaluation of the ability of antigen B originated from Echinococcus granulosus sensu stricto and E.canadensis for the diagnosis of confirmed human cystic echinococcosis using ELISA. Iran J Parasitol, 2022, 17(3): 358-365. |
62. | Ahmad A, Imran M, Ahsan H. Biomarkers as biomedical bioindicators: approaches and techniques for the detection, analysis, and validation of novel biomarkers of diseases. Pharmaceutics, 2023, 15(6): 1630. doi: 10.3390/pharmaceutics15061630. |
63. | Achi F, Attar AM, Lahcen AA. Electrochemical nanobiosensors for the detection of cancer biomarkers in real samples: Trends and challenges. TrAC Trends Analytical Chem, 2023, 170: 117423. doi: 10.1016/j.trac.2023.117423. |
64. | Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent advancements in nanobiosensors: current trends, challenges, applications, and future scope. Biosensors (Basel), 2022, 12(10): 892. doi: 10.3390/bios12100892. |
65. | Hassan AA, Sayed-Elahl RM, EL Hamaky AM, et al. Nanodiagnostics: New tools for detection of animal pathogens// Nanorobotics and nanodiagnostics in integrative biology and biomedicine. Springer, 2022: 299-325. |
66. | Cerbu C, White JC, Sabliov CM. 8-Nanotechnology in livestock: improving animal production and health // Zhang P, Lynch I, White J C, et al. Nano-enabled sustainable and precision agriculture. Academic Press, 2023: 181-213. |
67. | Shirazi S, Hoghooghi-Rad N, Madani R. The comparison between AgB-ELISA and a new method of nano-ELISA for diagnosis of hydatidosis in sheep. J Hell Vet Med Soc, 2022, 73(1): 3629-3634. |
68. | Shakra MY, Abou-Sheishaa GA, Hafez AO, et al. Conjugated silver nanoparticles as a diagnostic tool for circulating hydatid antigens. Egypt J Immunol, 2022, 29(4): 84-93. |
69. | El-Din MM, Badawy AA, Khayyal AI, et al. Diagnosis of human cystic echinococcosis by detecting antigen B in serum and urine using nanomagnetic beads-enzyme linked immunosorbent assay. QJM-Int J Med, 2024, 117(Supplement_1): hcae070.432. doi: 10.1093/qjmed/hcae070.432. |
70. | Korkmaz M, Inceboz T, Celebi F, et al. Use of two sensitive and specific immunoblot markers, Em70 and Em90, for diagnosis of alveolar echinococcosis. J Clin Microbiol, 2004, 42(7): 3350-3352. |
71. | Bi XJ, Shao YM, Li L, et al. Evaluation of the diagnostic value of the immunoblotting and ELISA tests using recombinant Em18 antigen in human alveolar echinococcosis from Xingjiang China. Exp Ther Med, 2018, 16(4): 3155-3160. |
72. | Xianwei Y, Tao W, Wentao W, et al. Expression and serodiagnostic efficacy of a novel echinococcosis-specific recombinant fusion antigen rAgB8/1-Em18-Eg95. 2023. doi: 10.21203/rs.3.rs-3635170/v1. |
73. | Deininger S, Wellinghausen N. Evaluation of a new combined Western and line blot assay (EUROLINE-WB) for diagnosis and species identification of Echinococcus infection in humans. GMS Infect Dis, 2019, 7: Doc01. doi: 10.3205/id000041. |
74. | Aslan M, Yüksel P, Polat E, et al. The diagnostic value of Western blot method in patients with cystic echinococcosis. New Microbiol, 2011, 34(2): 173-177. |
75. | Kumar Tenguria R, Naik MI, Fomda B. Application of Western Blotting for the post-treatment monitoring of human cystic echinococcosis. Iran J Public Health, 2013, 42(8): 826-832. |
76. | Celik T, Akarsu GA, Güngör C, et al. Evaluation of antibodies against hydatid cyst fluid antigens in the post-treatment follow-up of cystic echinococcosis patients. Med Sci Monit, 2009, 15(4): CR170-CR176. |
77. | Galitza Z, Bazarsky E, Sneier R, et al. Repeated treatment of cystic echinococcosis in patients with a long-term immunological response after successful surgical cyst removal. Trans R Soc Trop Med Hyg, 2006, 100(2): 126-133. |
78. | Firoozbakhtian A, Hosseini M. Chemiluminescence sensors in bioanalysis. Elsevier eBooks, 2023: 341-356. |
79. | Knapp J, Lallemand S, Monnien F, et al. Real-time multiplex PCR for human echinococcosis and differential diagnosis. Parasite, 2023, 30: 3. doi: 10.1051/parasite/2023003. |
80. | Rahmawati I, Irkham I, Wibowo R, et al. Electrogenerated chemiluminescence for immunoassay applications. Indones J Chem, 2021, 21(6): 1599-1618. |
81. | Hadipour M, Darani HY, Talebzadeh H, et al. Sensitive detection of specific cell-free DNA in serum samples from sheep with cystic echinococcosis. PLoS Negl Trop Dis, 2023, 17(10): e0011715. doi: 10.1371/journal.pntd.0011715. |
82. | Telicheva VO, Nagorniy SA, Ermakova LA, et al. Application of the PCR method to detect DNA of the causative agent of cystic echinococcosis in the blood. 2024. doi: 10.31016/978-5-6050437-8-2.2024.25.405-411. |
83. | Knapp J, Lallemand S, Monnien F, et al. Molecular diagnosis of alveolar echinococcosis in patients based on frozen and formalin-fixed paraffin-embedded tissue samples. Parasite, 2022, 29: 4. doi: 10.1051/parasite/2022004. |
84. | Zhou C, Li C, Deng Z, et al. Rapid diagnosis of alveolar echinococcosis from lung puncture sample using metagenomic next-generation sequencing: a case report. BMC Infect Dis, 2024, 24(1): 683. doi: 10.1186/s12879-024-09553-0. |
85. | Qu J, Xu H, Lv X. Disseminated alveolar echinococcosis in a patient diagnosed by metagenomic next-generation sequencing: A case report. Front Public Health, 2022, 10: 972619. doi: 10.3389/fpubh.2022.972619. |
86. | Li K, Ma Y, Ban R, et al. Case report: Diagnosis of human alveolar echinococcosis via next-generation sequencing analysis. Front Genet, 2021, 12: 666225. doi: 10.3389/fgene.2021.666225. |
87. | Song T, Peng S, Zhou X, et al. Case report: Diagnosis of vertebral alveolar echinococcosis upon next-generation sequencing in a suspected tuberculosis. Front Surg, 2022, 9: 984640. doi: 10.3389/fsurg.2022.984640. |
- 1. He W, Wang LY, Yu WJ, et al. Prevalence and spatial distribution patterns of human echinococcosis at the township level in Sichuan Province, China. Infect Dis Poverty, 2021, 10(1): 82. doi: 10.1186/s40249-021-00862-z.
- 2. Piarroux M, Piarroux R, Giorgi R, et al. Clinical features and evolution of alveolar echinococcosis in France from 1982 to 2007: results of a survey in 387 patients. J Hepatol, 2011, 55(5): 1025-1033.
- 3. Gharbi HA, Hassine W, Brauner MW, et al. Ultrasound examination of the hydatic liver. Radiology, 1981, 139(2): 459-463.
- 4. Kern P, Wen H, Sato N, et al. WHO classification of alveolar echinococcosis: principles and application. Parasitol Int, 2006, 55 Suppl: S283-S287. doi: 10.1016/j.parint.2005.11.041.
- 5. Stepanova YA, Goncharov AB, Zhao AV. Ultrasonic diagnostics at the stages of liver echinococcois treatment. J Experiment Clin Surg, 2022, 15(3): 244-253.
- 6. Beissert M, Delorme S, Mutze S, et al. Comparison of B-mode and conventional colour/power Doppler ultrasound, contrast-enhanced Doppler ultrasound and spiral CT in the diagnosis of focal lesions of the liver: Results of a multicentre study. Ultraschall Med, 2002, 23(4): 245-250.
- 7. Kim TH, Yoon JH, Lee JM. Emerging role of hepatobiliary magnetic resonance contrast media and contrast-enhanced ultrasound for noninvasive diagnosis of hepatocellular carcinoma: emphasis on recent updates in major guidelines. Korean J Radiol, 2019, 20(6): 863-879.
- 8. 王晶晶. 超声造影在肝泡型包虫病微波消融治疗效果评价中的研究. 西宁: 青海大学, 2021.
- 9. Tao S, Qin Z, Hao W, et al. Usefulness of gray-scale contrast-enhanced ultrasonography (SonoVue®) in diagnosing hepatic alveolar echinococcosis. Ultrasound Med Biol, 2011, 37(7): 1024-1028.
- 10. Cai D, Li Y, Jiang Y, et al. The role of contrast-enhanced ultrasound in the diagnosis of hepatic alveolar echinococcosis. Medicine (Baltimore), 2019, 98(5): e14325. doi: 10.1097/MD.0000000000014325.
- 11. 才让卓玛, 南嘉格列, 李晓君, 等. 常规彩超与超声造影诊断肝泡型包虫病效能比较. 实用肝脏病杂志, 2018, 21(2): 305-306.
- 12. 张旭辉, 索朗拉姆, 邱甲军, 等. 超声影像组学在肝包虫病分型中的应用研究. 临床超声医学杂志, 2024, 26(5): 353-359.
- 13. Findeisen H, Westhoff C, Trenker C, et al. Pulmonary cystic echinococcosis in contrast-enhanced ultrasound—a case report. J Ultrason, 2023, 23(92): 39-42.
- 14. Yangdan CR, Wang C, Zhang LQ, et al. Recent advances in ultrasound in the diagnosis and evaluation of the activity of hepatic alveolar echinococcosis. Parasitol Res, 2021, 120(9): 3077-3082.
- 15. Torgerson PR, Keller K, Magnotta M, et al. The global burden of alveolar echinococcosis. PLoS Negl Trop Dis, 2010, 4(6): e722. doi: 10.1371/journal.pntd.0000722.
- 16. Liu L, Guo B, Li W, et al. Geographic distribution of echinococcosis in Tibetan region of Sichuan Province, China. Infect Dis Poverty, 2018, 7(1): 104. doi: 10.1186/s40249-018-0486-4.
- 17. Wang Q, Huang Y, Huang L, et al. Review of risk factors for human echinococcosis prevalence on the Qinghai-Tibet Plateau, China: a prospective for control options. Infect Dis Poverty, 2014, 3(1): 3. doi: 10.1186/2049-9957-3-3.
- 18. Li T, Chen X, Zhen R, et al. Widespread co-endemicity of human cystic and alveolar echinococcosis on the eastern Tibetan Plateau, northwest Sichuan/southeast Qinghai, China. Acta Trop, 2010, 113(3): 248-256.
- 19. Huang D, Li R, Qiu J, et al. Geographical environment factors and risk mapping of human cystic echinococcosis in Western China. Int J Environ Res Public Health, 2018, 15(8): 1729. doi: 10.3390/ijerph15081729.
- 20. Yang YF, Yangdan CR, Jiang TA, et al. Ultrasound identification of hepatic echinococcosis using a deep convolutional neural network model in China: a retrospective, large-scale, multicentre, diagnostic accuracy study. Lancet Digit Health, 2023, 5(8): e503-e514. doi: 10.1016/S2589-7500(23)00091-2.
- 21. Cheng J, Wang H, Li R, et al. A two-stage multiresolution neural network for automatic diagnosis of hepatic echinococcosis from ultrasound images: A multicenter study. Med Phys, 2022, 49(5): 3199-3212.
- 22. 苟代文. CT平扫结合动态增强扫描在诊断肝泡型包虫病中的价值研究. 中国CT和MRI杂志, 2017, 15(10): 95-98.
- 23. Sade R, Kantarci M, Genc B, et al. Computed tomography perfusion imaging for the diagnosis of hepatic alveolar echinococcosis. Eurasian J Med, 2018, 50(1): 1-5.
- 24. Wang Z, Bian H, Li J, et al. Detection and subtyping of hepatic echinococcosis from plain CT images with deep learning: a retrospective, multicentre study. Lancet Digit Health, 2023, 5(11): e754-e762. doi: 10.1016/S2589-7500(23)00136-X.
- 25. Layer YC, Kravchenko D, Dell T, et al. CT technology: photon-counting detector computed tomography. Radiologie (Heidelb), 2023, 63(7): 497-506.
- 26. Kantarcı M, Aydın S, Kahraman A, et al. Virtual non-enhanced dual-energy computed tomography reconstruction: a candidate to replace true non-enhanced computed tomography scans in the setting of suspected liver alveolar echinococcosis. Diagn Interv Radiol, 2023, 29(6): 736-740.
- 27. Kodama Y, Fujita N, Shimizu T, et al. Alveolar echinococcosis: MR findings in the liver. Radiology, 2003, 228(1): 172-177.
- 28. 韩军伟. 肝泡型包虫病超声造影与MRI分型显示生物活性的一致性分析. 西宁: 青海大学, 2021.
- 29. Ren B, Wang J, Miao Z, et al. Hepatic alveolar echinococcosis: predictive biological activity based on radiomics of MRI. Biomed Res Int, 2021, 2021: 6681092. doi: 10.1155/2021/6681092.
- 30. Li J, Dong J, Yang L, et al. Comparison of 18F-fluorodeoxyglucose positron emission tomography and contrast-enhanced ultrasound for evaluation of hepatic alveolar echinococcosis activity. Ultrasound Med Biol, 2018, 44(11): 2199-2208.
- 31. 王志鑫, 刘云飞, 王灏, 等. 肝泡型包虫病的诊治进展. 器官移植, 2024, 15(2): 171-177.
- 32. Liu W, Delabrousse É, Blagosklonov O, et al. Innovation in hepatic alveolar echinococcosis imaging: best use of old tools, and necessary evaluation of new ones. Parasite, 2014, 21: 74. doi: 10.1051/parasite/2014072.
- 33. Husmann L, Gruenig H, Reiner CS, et al. Prediction of benzimidazole therapy duration with PET/CT in inoperable patients with alveolar echinococcosis. Sci Rep, 2022, 12(1): 11392. doi: 10.1038/s41598-022-15641-5.
- 34. Garabedian GA, Matossian RM, Djanian AY. An indirect hemagglutination test for hydatid disease. J Immunol, 1957, 78(4): 269-272.
- 35. Zait H, Hamrioui B. Human cystic echinococcosis: Serological diagnosis by indirect hemagglutination test, enzyme-linked immunosorbent assay, immunoelectrophoresis, and immunoblotting in surgically confirmed patients versus cases diagnosed by imaging techniques. Med Mal Infect, 2020, 50(8): 676-683.
- 36. Erganis S, Sarzhanov F, Al FD, et al. Comparison of methods in the serologic diagnosis of cystic echinococcosis. Acta Parasitol, 2024, 69(2): 1122-1131.
- 37. Aksoy U, Inci A. Application of in-house enzyme immunoassay and indirect hemagglutination methods for the serologic diagnosis of cystic echinococcosis. Mikrobiyol Bul, 2004, 38(3): 245-251.
- 38. Akil M, Ozkeklikci A, Ozturk EA, et al. Evaluation of usefulness of three serological tests using native crude antigen in diagnosis of hepatic cystic echinococcosis patients. Open J Med Microbiol, 2021, 11(2): 69-79.
- 39. Sari C, Ertuğ S, Karadam SY, et al. The comparative evaluation of Enzyme Linked Immunosorbent Assay (ELISA), Indirect Hemagglutination Test (IHA) and Indirect Fluorescent Antibody Test (IFAT) in the diagnosis of cystic echinococcosis. Turkiye Parazitol Derg, 2009, 33(1): 73-76.
- 40. Vola A, Manciulli T, De Silvestri A, et al. Diagnostic performances of commercial ELISA, indirect hemagglutination, and Western blot in differentiation of hepatic echinococcal and non-echinococcal lesions: a retrospective analysis of data from a single referral centre. Am J Trop Med Hyg, 2019, 101(6): 1345-1349.
- 41. Hadipour M, Fasihi Harandi M, Mirhendi H, et al. Diagnosis of echinococcosis by detecting circulating cell-free DNA and miRNA. Expert Rev Mol Diagn, 2023, 23(2): 133-142.
- 42. Ji J, Li B, Li J, et al. Comprehensive characterization of plasma cell-free Echinococcus spp. DNA in echinococcosis patients using ultra-high-throughput sequencing. PLoS Negl Trop Dis, 2020, 14(4): e0008148. doi: 10.1371/journal.pntd.0008148.
- 43. Zhang RJ, Li JZ, Pang HS, et al. Advances in the study of molecular identification technology of Echinococcus species. Trop Biomed, 2022, 39(3): 434-443.
- 44. Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: Advances in the 21st century. Clin Microbiol Rev, 2019, 32(2): e00075-18. doi: 10.1128/CMR.00075-18.
- 45. Yücesan B, Babür C, Kılıç S, et al. Evaluation of echinococcosis pre-diagnosis patients admitted to the National Parasitology Reference Laboratory of Turkey from 2014–2019. Iran J Parasitol, 2022, 17(2): 250-258.
- 46. Alhajj M, Zubair M, Farhana A. Enzyme linked immunosorbent assay. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2024.
- 47. Tabatabaei MS, Ahmed M. Enzyme-Linked Immunosorbent Assay (ELISA). Methods Mol Biol,2022, 2508: 115-134.
- 48. Peruzzu A, Mastrandrea S, Fancellu A, et al. Comparison and evaluation of analytic and diagnostic performances of four commercial kits for the detection of antibodies against Echinococcus granulosus and multilocularis in human sera. Comp Immunol Microbiol Infect Dis, 2022, 86: 101816. doi: 10.1016/j.cimid.2022.101816.
- 49. Carmena D, Benito A, Eraso E. Antigens for the immunodiagnosis of Echinococcus granulosus infection: An update. Acta Trop, 2006, 98(1): 74-86.
- 50. Gottstein B, Eckert J, Fey H. Serological differentiation between Echinococcus granulosus and E.multilocularis infections in man. Z Parasitenkd, 1983, 69(3): 347-356.
- 51. Gottstein B, Jacquier P, Bresson-Hadni S, et al. Improved primary immunodiagnosis of alveolar echinococcosis in humans by an enzyme-linked immunosorbent assay using the Em2plus antigen. J Clin Microbiol, 1993, 31(2): 373-376.
- 52. Demirkazık M, Koltas İS, İnceboz T, et al. Use of the ELISA (Em2-Em18) and Western Blotting methods on diagnosis of alveolar echinococcosis. Turkiye Parazitol Derg, 2019, 43(Suppl 1): 13-17.
- 53. Pektaş B, Altintaş N, Akpolat N, et al. Evaluation of the diagnostic value of the ELISA tests developed by using EgHF, Em2 and EmII/3-10 antigens in the serological diagnosis of alveolar echinococcosis. Mikrobiyol Bul, 2014, 48(3): 461-468.
- 54. Xiao N, Mamuti W, Yamasaki H, et al. Evaluation of use of recombinant Em18 and affinity-purified Em18 for serological differentiation of alveolar echinococcosis from cystic echinococcosis and other parasitic infections. J Clin Microbiol, 2003, 41(7): 3351-3353.
- 55. Ito A, Xiao N, Liance M, et al. Evaluation of an enzyme-linked immunosorbent assay (ELISA) with affinity-purified Em18 and an ELISA with recombinant Em18 for differential diagnosis of alveolar echinococcosis: results of a blind test. J Clin Microbiol, 2002, 40(11): 4161-4165.
- 56. Jiang L, Wen H, Ito A. Immunodiagnostic differentiation of alveolar and cystic echinococcosis using ELISA test with 18-kDa antigen extracted from Echinococcus protoscoleces. Trans R Soc Trop Med Hyg, 2001, 95(3): 285-288.
- 57. Ito A, Ma L, Schantz PM, et al. Differential serodiagnosis for cystic and alveolar echinococcosis using fractions of Echinococcus granulosus cyst fluid (antigen B) and Emultilocularis protoscolex (EM18). Am J Trop Med Hyg, 1999, 60(2): 188-192.
- 58. Khan S, Cable J, Younus M, et al. IEg67 kDa bovine hydatid cyst antigen: a candidate for developing sero-diagnostic assays for cystic echinococcosis, a disease of one health importance. Animals (Basel), 2023, 13(5): 866. doi: 10.3390/ani13050866.
- 59. Toaleb NI, Aboelsoued D, Abdel Megeed KN, et al. A novel designed sandwich ELISA for the detection of Echinococcus granulosus antigen in camels for diagnosis of cystic echinococcosis. Trop Med Infect Dis, 2023, 8(8): 400. doi: 10.3390/tropicalmed8080400.
- 60. Kronenberg PA, Reinehr M, Eichenberger RM, et al. Monoclonal antibody-based localization of major diagnostic antigens in metacestode tissue, excretory/secretory products, and extracellular vesicles of Echinococcus species. Front Cell Infect Microbiol, 2023, 13: 1162530. doi: 10.3389/fcimb.2023.1162530.
- 61. Sadjjadi SF, Mohammadzadeh T, Hafezi F, et al. Evaluation of the ability of antigen B originated from Echinococcus granulosus sensu stricto and E.canadensis for the diagnosis of confirmed human cystic echinococcosis using ELISA. Iran J Parasitol, 2022, 17(3): 358-365.
- 62. Ahmad A, Imran M, Ahsan H. Biomarkers as biomedical bioindicators: approaches and techniques for the detection, analysis, and validation of novel biomarkers of diseases. Pharmaceutics, 2023, 15(6): 1630. doi: 10.3390/pharmaceutics15061630.
- 63. Achi F, Attar AM, Lahcen AA. Electrochemical nanobiosensors for the detection of cancer biomarkers in real samples: Trends and challenges. TrAC Trends Analytical Chem, 2023, 170: 117423. doi: 10.1016/j.trac.2023.117423.
- 64. Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent advancements in nanobiosensors: current trends, challenges, applications, and future scope. Biosensors (Basel), 2022, 12(10): 892. doi: 10.3390/bios12100892.
- 65. Hassan AA, Sayed-Elahl RM, EL Hamaky AM, et al. Nanodiagnostics: New tools for detection of animal pathogens// Nanorobotics and nanodiagnostics in integrative biology and biomedicine. Springer, 2022: 299-325.
- 66. Cerbu C, White JC, Sabliov CM. 8-Nanotechnology in livestock: improving animal production and health // Zhang P, Lynch I, White J C, et al. Nano-enabled sustainable and precision agriculture. Academic Press, 2023: 181-213.
- 67. Shirazi S, Hoghooghi-Rad N, Madani R. The comparison between AgB-ELISA and a new method of nano-ELISA for diagnosis of hydatidosis in sheep. J Hell Vet Med Soc, 2022, 73(1): 3629-3634.
- 68. Shakra MY, Abou-Sheishaa GA, Hafez AO, et al. Conjugated silver nanoparticles as a diagnostic tool for circulating hydatid antigens. Egypt J Immunol, 2022, 29(4): 84-93.
- 69. El-Din MM, Badawy AA, Khayyal AI, et al. Diagnosis of human cystic echinococcosis by detecting antigen B in serum and urine using nanomagnetic beads-enzyme linked immunosorbent assay. QJM-Int J Med, 2024, 117(Supplement_1): hcae070.432. doi: 10.1093/qjmed/hcae070.432.
- 70. Korkmaz M, Inceboz T, Celebi F, et al. Use of two sensitive and specific immunoblot markers, Em70 and Em90, for diagnosis of alveolar echinococcosis. J Clin Microbiol, 2004, 42(7): 3350-3352.
- 71. Bi XJ, Shao YM, Li L, et al. Evaluation of the diagnostic value of the immunoblotting and ELISA tests using recombinant Em18 antigen in human alveolar echinococcosis from Xingjiang China. Exp Ther Med, 2018, 16(4): 3155-3160.
- 72. Xianwei Y, Tao W, Wentao W, et al. Expression and serodiagnostic efficacy of a novel echinococcosis-specific recombinant fusion antigen rAgB8/1-Em18-Eg95. 2023. doi: 10.21203/rs.3.rs-3635170/v1.
- 73. Deininger S, Wellinghausen N. Evaluation of a new combined Western and line blot assay (EUROLINE-WB) for diagnosis and species identification of Echinococcus infection in humans. GMS Infect Dis, 2019, 7: Doc01. doi: 10.3205/id000041.
- 74. Aslan M, Yüksel P, Polat E, et al. The diagnostic value of Western blot method in patients with cystic echinococcosis. New Microbiol, 2011, 34(2): 173-177.
- 75. Kumar Tenguria R, Naik MI, Fomda B. Application of Western Blotting for the post-treatment monitoring of human cystic echinococcosis. Iran J Public Health, 2013, 42(8): 826-832.
- 76. Celik T, Akarsu GA, Güngör C, et al. Evaluation of antibodies against hydatid cyst fluid antigens in the post-treatment follow-up of cystic echinococcosis patients. Med Sci Monit, 2009, 15(4): CR170-CR176.
- 77. Galitza Z, Bazarsky E, Sneier R, et al. Repeated treatment of cystic echinococcosis in patients with a long-term immunological response after successful surgical cyst removal. Trans R Soc Trop Med Hyg, 2006, 100(2): 126-133.
- 78. Firoozbakhtian A, Hosseini M. Chemiluminescence sensors in bioanalysis. Elsevier eBooks, 2023: 341-356.
- 79. Knapp J, Lallemand S, Monnien F, et al. Real-time multiplex PCR for human echinococcosis and differential diagnosis. Parasite, 2023, 30: 3. doi: 10.1051/parasite/2023003.
- 80. Rahmawati I, Irkham I, Wibowo R, et al. Electrogenerated chemiluminescence for immunoassay applications. Indones J Chem, 2021, 21(6): 1599-1618.
- 81. Hadipour M, Darani HY, Talebzadeh H, et al. Sensitive detection of specific cell-free DNA in serum samples from sheep with cystic echinococcosis. PLoS Negl Trop Dis, 2023, 17(10): e0011715. doi: 10.1371/journal.pntd.0011715.
- 82. Telicheva VO, Nagorniy SA, Ermakova LA, et al. Application of the PCR method to detect DNA of the causative agent of cystic echinococcosis in the blood. 2024. doi: 10.31016/978-5-6050437-8-2.2024.25.405-411.
- 83. Knapp J, Lallemand S, Monnien F, et al. Molecular diagnosis of alveolar echinococcosis in patients based on frozen and formalin-fixed paraffin-embedded tissue samples. Parasite, 2022, 29: 4. doi: 10.1051/parasite/2022004.
- 84. Zhou C, Li C, Deng Z, et al. Rapid diagnosis of alveolar echinococcosis from lung puncture sample using metagenomic next-generation sequencing: a case report. BMC Infect Dis, 2024, 24(1): 683. doi: 10.1186/s12879-024-09553-0.
- 85. Qu J, Xu H, Lv X. Disseminated alveolar echinococcosis in a patient diagnosed by metagenomic next-generation sequencing: A case report. Front Public Health, 2022, 10: 972619. doi: 10.3389/fpubh.2022.972619.
- 86. Li K, Ma Y, Ban R, et al. Case report: Diagnosis of human alveolar echinococcosis via next-generation sequencing analysis. Front Genet, 2021, 12: 666225. doi: 10.3389/fgene.2021.666225.
- 87. Song T, Peng S, Zhou X, et al. Case report: Diagnosis of vertebral alveolar echinococcosis upon next-generation sequencing in a suspected tuberculosis. Front Surg, 2022, 9: 984640. doi: 10.3389/fsurg.2022.984640.